Safe Apnea Time

Jelle Kennes
Mohammed Bashraheel
Supervisor: Dr. Veeckman

What is Safe Apnea Time?

- Starts when *apnoea/obstruction* occurs, until any situation in which adequate alveolar *oxygen delivery* can be confirmed before critical desaturation.

Aim of lecture

- Oxygen delivery
- Relevant technique
- It is **NOT** directly about difficult ventilation or intubation

Why is it relevant?

- The goal in airway management is to provide *oxygenation* and ventilation.
- M&M result when *oxygenation* cannot be provided. *
Approach

- Oxygen reserve, determinants of desaturation speed
- Techniques per phase of induction:
 - Preoxygenation phase
 - Post induction/ventilation phase
 - Apneic oxygenation phase
- Case report

Speed of desaturation

- \(\text{O}_2 \) Reserve
- \(\text{O}_2 \) Consumption
- \(\text{O}_2 \) Delivery

\(\text{O}_2 \) Reserve

- Blood
 - Plasma
 - 7 ml \(\text{O}_2 \) on air
 - 45 ml \(\text{O}_2 \) on \(\text{O}_2 \)
 - Hemoglobin
 - 788 ml on air
 - 804 ml on \(\text{O}_2 \)
- Lung
 - 630 ml on air
 - 2850 ml on \(\text{O}_2 \)
O₂ Consumption

- Age
 - Pediatrics
 - Elderly
- Pregnant
- Trauma Patienten
- Septic
- Depth of anesethie
- Drug used for induction * **

O₂ delivery

- FAO2
- FRC
- Shunting
- Hb concentration
- Etc ...

What I’m trying to say

"Blah! Blah!"

- O₂ Consumption and Delivery will give you an idea about the speed of desaturation
- FRC has the greatest extend on Safe Apnea Time

Preoxygenation: definitions

- Preoxygenation “denitrogenation”:
 - administration of oxygen before induction
- Failure:
 - defined as an FeO₂<90% after three minutes of tidal volume breathing *
- Desaturation:
 - SpO₂ < 90%
Why is it so important?

- With SARI less than 2% were unanticipated difficult intubation *
- BUT, in daily clinical practice:
 - 93% were unanticipated intubations.
 - When anticipated, 25% had an actual difficult intubation.
- Difficult mask ventilation:
 - 94% were unanticipated
 - When anticipated, 22% had an actual difficult mask ventilation

Effect on Safe apnea time

- FIO2 0.21 ->
 - 1–2 min of apnea time
- FIO2 1.0 ->
 - 8 min
- Obese FIO2 1.0 -> 2–3 min

Preoxygenation techniques

- Spontaneous breathing at FiO2 of 1 for 3 min
 - O2 flow 5L/min is enough “MV”
 - FeO2 of 95% in the first min
- Vital capacity manoeuvre “4 deep breaths within 30 sec”
 - Safe apnea time is shorter
 - O2 flow 10L/min
- Modified vital capacity “8 deep breaths within 60 sec”
 - Comparable results to spontaneous breathing even in obese population
Preoxygenation techniques

- The voluntary hyperventilation technique
 - 1 minute at FiO2 1
 - followed by 2 minutes of voluntary hyperventilation
 - PaCO2 after intubation was similar

- Pressure support
 - improve the quality by:
 - Acceleration of denitrogenation
 - Better mask seal
 - 90-100% reached FE02 of 90% compared with 65% with spontaneous breathing *
 - Suggested settings
 - PS 4 cm H2O with PEEP 4

FiO2 & Atelectasis

- Post induction atelectasis
 - FiO2 1.0 vs lower
 - Atelectasis has also been observed when a FiO2 0.4 is used
 - FiO2 of 0.8 does not prevent atelectasis
 - So, always preoxygenate with 100% O2 *

Monitoring of Preoxygenation

- SpO2
 - Doesn’t reflect the quality of preoxygenation

- CO2 wave shape
 - Indicator of quality of the mask seal
 - Most common reason of failure is loos mask *
 - Leaks of 4 mm2 causes significant reduction in FiO2 **

- FeO2
 - Small tidal volume leads to false high FeO2, thus overestimation of FAO2

Preoxygenation: Obese

- Problems
 - Shunt, can exceed 20%
 - Decrease in FRC
 - Increase in O2 consumption

- Techniques
 - CPAP doesn’t improve safe apnea time
 - PS with PEEP improves post intubation PaO2
 - 25° head-up position prolongs safe apnea time
Preoxygenation: Pregnancy

- Complete denitrogenation need shorter time
- Safe apnea time can be only 60 sec

Preoxygenation: Pediatrics

- 2 min of spontaneous breathing, desaturation time
 - < 6 months: 97 sec
 - 2-5 years: 160 sec
 - 11-18 years: 382 sec
- No benefit of longer preoxygenation than 3 min
- Cave: Preoxygenating with N2O/O2 can decrease safe apnea

Preoxygenation: Altered mental status, claustrophobia

- Claustrophobia
 - Let hem hold the mask!
 - THRIVE
- DSI “Delayed Sequence Intubation”
 - Induction with Ketamine to achieve dissociation

Ventilation Phase

- Goal is a good mask seal:
 - FeO2
 - CO2 curve shape
- If one hand is not enough, why not 2!
 - Claw grip VS Vice grip
- LMA
Rapid Sequence Induction

- Gentle face mask ventilation?
 - 20 cm H$_2$O **
 - 10 vs 15 cm H$_2$O***
 - 33% with 15 cm H$_2$O, 12% unable to ventilate
 - 19% with 10 cm H$_2$O, 75% unable to ventilate
 - Manual vs Mechanical ventilation ****

Apneic oxygenation: history

- Is it new?
 - 1908 Volhard
 - 1956 Holmdahl
 - 1959 Frumin

- Same phenomenon, many names:
 - Diffusion respiration
 - AVMF
 - Apneic oxygenation
 - ...

Apneic oxygenation: history

TABLE 1

<table>
<thead>
<tr>
<th>Subject Number</th>
<th>Duration of Apnea (sec)</th>
<th>Loss of Arterial Respiration to Next</th>
<th>Loss of Arterial Life</th>
<th>Highest PaCO$_2$ (mm Hg)</th>
<th>Average Rate of Loss PaCO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>90</td>
<td>6.5 to 6.5 mg/dL</td>
<td>130</td>
<td>4.0</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
<td>90</td>
<td>6.5 to 6.5 mg/dL</td>
<td>130</td>
<td>4.0</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>90</td>
<td>6.5 to 6.5 mg/dL</td>
<td>500</td>
<td>3.5</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>100</td>
<td>6.5 to 6.5 mg/dL</td>
<td>100</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Frumin et al. *

Physiology of apneic oxygenation

Image from AANA journal, 2016
Physiology of apneic oxygenation

- Aventilatory Mass Flow (AVMF)
- Pharyngeal gas composition
- Diffusion of O2
- Elasticity of lungs → collapse and atelectasis

Hypercarbia

- Production of CO2: 200 – 250 ml/min
- ApOx: 90% CO2 in circulation, 10% enters alveoli
- PaCO2 rise: 1.12 – 2.4 mmHg/min
- Uncompensated respiratory acidosis
- Complications: seizures, arrhythmia’s, cardiovascular collapse, death

Results of Apneic Oxygenation

- Apneic oxygenation was associated with increased peri-intubation oxygen saturation, decreased rates of hypoxemia, and increased first-pass intubation success.

Results of Apneic Oxygenation

- ApOx significantly reduces the incidence of hypoxemia during emergency endotracheal intubation. Inclusion in everyday practice.
Conditions and restrictions

- Patent airway between alveoli and pharynx
 - Edentulous
 - Obstetric
 - Obese
 - OSAS
- Limited by hypercarbia
- Pathologic lung: collaps, atelectasis, shunt, VQ mismatch

How to perform it?

- Nasal Prongs
 - NO DESAT*
 - THRIVE**
- Nasopharyngeal catheters

How to perform it?

- Modified laryngoscope
- Buccal oxygen delivery

Hollow Catheters

- Frova catheter/ Tube exchanger
 - Gum-elastic bougie VS Frova
 - Administration of oxygen
 - RAPI-FIT adapter
 - Does it work?

* Terms & Conditions

How to perform it?

- RAPI-FIT ADAPTER 15 mm connector
- RAPI-FIT ADAPTER Luer lock connector
O₂ during fiberoptic intubation

- Endoscopy mask
O₂ during fiberoptic intubation:

- Endoscopy mask
- 2 man job
- LMA
 - Second generation "i-gel" + bronchoscopy elbow
 - Classical LMA + Aintree Intubation Catheter
- Connecting oxygen instead of suction

THRIVE:

- Transnasal Humidified Rapid Insufflation Ventilatory Exchange
- Matches peak inspiratory flow and prevent room air entrainment
 - Flow rate 60L/min
- Nasopharyngeal dead space as reservoir
- PEEP 6mmHg
- Greater patient comfort.
- Increased safe apnea time
Examples

- THRIVE: significant longer safe apnea time compared to apneic oxygenation

THRIVE

- Possible applications:
 - Preoxygenation
 - RSI
 - Pediatric patients
 - Difficult airway and reduced FRC
 - Critically ill

 Ang et al.
 Mir et al.
 Raineri et al.
 Patel et al.
 Vourc'h et al.

In difficult airway

- THRIVE = APOX + CPAP + gaseous exchange

 Patel A. 2014

- Lower rise in CO2 compared to airway obstruction/ classic APOX

 Patel A. 2014
In critically ill

• THRIVE minimizes risk of hypoxia in emergency intubation. *

• HFNC O2 significantly improved preoxygenation and reduced prevalence of severe hypoxemia compared with nonrebreathing bag reservoir facemask. Its use could improve patient safety during intubation. **

In critically ill, cont.

• THRIVE does not prevent deep desaturation during intubation in severely hypoxemic patients. Vourc’h et al.

Case Reports: ECMO *

• 45 Case reports
• All cases reported a favorable patient outcome with all patients surviving to hospital discharge without significant complications

• 77-yr-old male
• complex cardiac history: CABG, PM
• Obese BMI 35 Kg.m²
• Thyroid carcinoma
• CT showed a 1-mm opening at the level of the glottis
Case Reports: ECMO

- Patient was sedated with Midazolam
- ECMO was placed by a cardiac surgeon with local anesthetics
- General Anesthesia was induced
- Anesthetist failed to intubated the patient with video-laryngoscope
- The ENT surgeon skipped rigid bronchoscopy and placed a tracheotomy through the thyroid carcinoma
- ECMO then was removed, and heparin was antagonized

Take home messages

- Preoxygenation to avoid M&M
- Preoxygenation is your safety net, as we are in general not that good in anticipating difficult airway
- Optimize preoxygenation technique
 - Risk population: obese, pregnant and pediatric patients
- Concept of safe apnea time, and it always starts with preoxygenation
- Apneic oxygenation prolongs safe apnea time
 - NO DESAT
 - THRIVE

Take home messages

- Preoxygenation
- Preoxygenation
- Preoxygenation
- Preoxygenation
Sources

• Erbguth PH, Bergman NA. The effect of a single dose of succinylcholine on oxygen consumption and carbon dioxide production in man. Anesthesiology 1973
• Incidence of unanticipated difficult airway using an objective airway score versus a standard clinical airway assessment: the DIFFICAIR trial – trial protocol for a cluster randomized clinical trial Anders Kehlet Nørskov1
• Critical Hemoglobin Desaturation Will Occur before Return to an Unparalyzed State following 1 mg/kg Intravenous Succinylcholine Jonathan L. Benumof, MD; Rachel Dagg, MS; Reuben Benumof, PhD

Recommended Resources

• Basics: Preoxygenation and general anesthesia: a review
 • By G. BOUROCHE, J. L. BOURGAIN, 2015, Minerva Anestesiologica
 • Website: http://vortexapproach.org/
• THRIVE: a physiological method of increasing apnoea time in patients with difficult airways.
 • By A. Patel, SA Nouraei