Uncertainty of Measurement in the Medical Laboratory

Florent Vanstapel MD PhD
Clinical Chemistry – POCT Coordinator
Laboratory Medicine
UZ Leuven – KU Leuven – Belgium

CAT-Series – Leuven April 23 2015
Everything you wanted to know about UM
- norm-compliance?
- clinical relevance?

But were afraid to ask
- is it difficult?
- do you get payed for it?
Relevant Standards

- EU IVD Regulation
- ISO 15189
- Technical standards
EU DIRECTIVE 98/79/EC (IVD Directive)
What the industry is required to do

Art. 1. 3. For the purposes of this Directive, calibration and control materials refer to any substance, material or article intended by their manufacturer either to establish measurement relationships or to verify the performance characteristics of a device in conjunction with the intended use ...

Annex III. 3. adequate performance evaluation data showing the performances claimed ... and supported by a reference measurement system, with information on the reference methods, the reference materials, the known reference values, the accuracy and measurement units used; such data should originate from studies in a clinical or other appropriate environment or result from relevant biographical references,
ISO-15189:2014

What the laboratory is required to do

5.3.1.4 Equipment *calibration and metrological traceability*
b) *metrological traceability* of the standard and calibration
c) *verifying measurement accuracy ... at defined intervals*;
traceability shall be to a reference material or procedure

5.5.1.2 **Verification** of examination procedures
applies to Validated (= *established*) examination procedures ...
independent verification by laboratory ...
through objective evidence

5.5.1.3 **Validation** of examination procedures
validate
a) *non-standard methods*; b) laboratory developed methods;
c) standard methods used outside intended scope;
d) validated methods subsequently modified.

NOTE Performance characteristics include:
trueness, accuracy, precision; *uncertainty*, analytical specificity, ...
5.5.1.4 Measurement uncertainty of measured quantity values shall ... regularly review estimates of measurement uncertainty.

NOTE 1 The relevant components ... actual measurement process, commencing with the presentation of the sample to the measurement procedure and ending with the output of the measured value.

NOTE 2 Measurement uncertainties may be ... obtained by measurement of quality control materials under intermediate conditions that include e.g. changes of reagent and calibrator batches, different operators, scheduled instrument maintenance.

Upon request, the lab shall make its estimates of measurement uncertainty available to laboratory users.

Internal Quality Control: ANOVA
Technical Standards
How things are done

Eurachem: The Fitness for Purpose of Analytical Methods
Laboratory Guide to Method Validation & Related Topics

6.5 METHOD DEVELOPMENT
6.6 THE DIFFERENT PERFORMANCE CHARACTERISTICS OF A METHOD
6.6.4 Trueness
6.6.5 Precision
6.6.6 Measurement uncertainty

TrainMic: EC JRC IRMM
Training in Metrology in Chemistry

3. Single Laboratory Validation of Measurement Procedures
4. Uncertainty of Measurement Principles
5. Uncertainty of Measurement: Approaches to Evaluation
Message #1

Standards don’t ask for much neither from us 😊 or from the industry 😞

- Method verification 😊 vs validation
- Trueness / Traceability / Commutability 😞
- Budget of Measurement Uncertainty can be derived from 😊
 internal Quality Control Data 😊 😞
- ...
Casus:
Typical Method Implementation

Validation File:
Fit for the Intended Use?
Method Validation: Traceability to Comparator

Method Comparison

Intercept = 0; Slope = 1

Allowed Total Error (dashed line) = 31% of Spread in Reference Population (Tonks criterium)

Analytical Imprecision (shaded area) < 1/3 of Total Error
~ 1/2 of a 6 σ process

What was the Question: Does this make it a test Fit for the Intended Use?

F. Vanstapel - Measurement Uncertainty
Clinical Validation: ROC-curve

The Raw Data

\[P(x < X | \text{Dis}+) \]

\[P(x < X | \text{Dis}-) \]

The Raw Data

\[\text{Avg}_{\text{Dis}+} - \text{Avg}_{\text{Dis}-} = 3 \text{ SD}_{\text{Dis}-} \]

Avg_{\text{Dis}+} at 3 SD_{\text{Dis}-} = Definition of Limit of Detection

Does this make it a test unfit for purpose?
Dichotomous Analysis

Black – Gamble – White

Loss of Truth due to misclassification

<table>
<thead>
<tr>
<th></th>
<th>D^-</th>
<th>D^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>T^-</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>T^+</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

Measurand (level)

- T^-: Trained, testing negative
- T^+: Trained, testing positive
- D^-: Detection, testing negative
- D^+: Detection, testing positive
Dichotomous Analysis

Black – Gamble – White

Loss of Certainty due to
Biological Spread

Uncertainty Budget

Total

Analytical

Biological

Gains

Losses

Simulator

F. Vanstapel - Measurement Uncertainty
How a Test Result is Interpreted

Black – Grey – White

Differential Diagnosis
- Don’t miss what needs urgent intervention
- Workup list of common causes
- But also exclude rare causes

You need not to confirm doubt but to exclude Dis- or Dis+
Dichotomous Analysis

Black – Undecided – White

= losses

If you refuse to Gamble

predictive value increases
trade-in: sensitivity
& specificity

CAVE: grey zone
no decision = also a decision
Where can the validation exercise create value?

Created Value

Cost of Test

Unavoidable Quality Failure

Grey Zone

Avoidable Failures

Unavoidable Uncert. of Measurement

Biological Overlap

Cost of Test

Test Utilization

Benefit

Cost of Quality Failure

Unavoidable Quality Failure

Grey Zone

Normal Production Costs

Actual Production Costs

Substandard UM
Cause-Effect Analysis

F. Vanstapel - Measurement Uncertainty
Message #2

Diagnostic Value depends on whether you ordered a test with Power of Exclusion

Typically, Analytical Uncertainty has little effect on Diagnostic Power 😊

UM doesn’t ruin a good test 😊
& can’t rescue a bad test 😞
Everything you wanted to know about UM
- norm-compliance?
- clinical relevance?

But were afraid to ask
- is it difficult?
- do you get payed for it?
Casus: UM properly

The **Nuts and Bolts** of UM Evaluation
UM Evaluation starts with

Inventory of Sources of Error
Risk Analysis Generic Laboratory Process

After ISO/TS 22367:2008 = Workshop Approach
= Fishbone analysis

F. Vanstapel - Measurement Uncertainty
Risk Analysis: Failure-Mode analysis: What can cause relevant failures?

Test Ordering
Right Test at the Right Time … for the Right Patient …

Pre-analytical
Biological Variation
Pulsatility, Diurnal & Seasonal Variation
Physiological (Starvation, Exercise, …) Variation, TimeStamp

Specimen Collection
Posture
Stasis, Hemolysis, Filling of the tube
Right patient, Correct labelling, sample, recipient, …

Analytical = Measurement Process
Sample reception & processing
Right identification of primary and secondary sample
Completeness of coagulation, …
Micro cloths: obstruction needle, light scattering, …
Membrane ghosts and fragments, …

Uncertainty of Measurement
Bias, Specificity, …
Calibration, Linearity, …
Inter-batch random error, …
Other sources of (random) imprecision
Equipment faults (aspiration, carry-over, sporadic faults, ..)

Interpretation
Adequacy, sampling details, specimen quality, …, …
Adequacy cut-offs, reference ranges, …
Adequacy interpretation support

Process Approach of Diagnostic Cycle

Post-analytical
Reporting for the right patient
Transcription errors, …, …
Data transfer errors, …

Test Ordering
Right Test at the Right Time … for the Right Patient …

Pre-analytical
Biological Variation
Pulsatility, Diurnal & Seasonal Variation
Physiological (Starvation, Exercise, …) Variation, TimeStamp

Specimen Collection
Posture
Stasis, Hemolysis, Filling of the tube
Right patient, Correct labelling, sample, recipient, …

Analytical = Measurement Process
Sample reception & processing
Right identification of primary and secondary sample
Completeness of coagulation, …
Micro cloths: obstruction needle, light scattering, …
Membrane ghosts and fragments, …

Uncertainty of Measurement
Bias, Specificity, …
Calibration, Linearity, …
Inter-batch random error, …
Other sources of (random) imprecision
Equipment faults (aspiration, carry-over, sporadic faults, ..)

Interpretation
Adequacy, sampling details, specimen quality, …, …
Adequacy cut-offs, reference ranges, …
Adequacy interpretation support

Process Approach of Diagnostic Cycle

Post-analytical
Reporting for the right patient
Transcription errors, …, …
Data transfer errors, …

Test Ordering
Right Test at the Right Time … for the Right Patient …

Pre-analytical
Biological Variation
Pulsatility, Diurnal & Seasonal Variation
Physiological (Starvation, Exercise, …) Variation, TimeStamp

Specimen Collection
Posture
Stasis, Hemolysis, Filling of the tube
Right patient, Correct labelling, sample, recipient, …

Analytical = Measurement Process
Sample reception & processing
Right identification of primary and secondary sample
Completeness of coagulation, …
Micro cloths: obstruction needle, light scattering, …
Membrane ghosts and fragments, …

Uncertainty of Measurement
Bias, Specificity, …
Calibration, Linearity, …
Inter-batch random error, …
Other sources of (random) imprecision
Equipment faults (aspiration, carry-over, sporadic faults, ..)

Interpretation
Adequacy, sampling details, specimen quality, …, …
Adequacy cut-offs, reference ranges, …
Adequacy interpretation support

Process Approach of Diagnostic Cycle

Post-analytical
Reporting for the right patient
Transcription errors, …, …
Data transfer errors, …
Message #3

The Core Analytical Process and the associated UM should not be your only focus, maybe not even your primary focus?
UM Evaluation
(in the narrow sense)

Approach #1
Inventory of Sources of Analytical Error
Fishbone Analysis of an Analytical Assay

e.g. Calibrator formulation

Volume

Purity

Temperature
Calibration
Repeatability

Temperature
Humidity
Barometric Pressure

Readability

Massa

M(tare)
Sensitivity
Linearity
Calibration
Repeatability

M(gross)
Sensitivity
Linearity
Calibration
Repeatability

C(compound)
Message #4

Fishbone Analysis identifies
- Input Variables
 = Model Equation (see next section)
- & Influence Variables
 typically not represented in the model
 did your supplier develop a rugged test?
Approach #2

Model Equation -> Error Propagation: Sensitivity or Ruggedness Analysis
Example: Extraction & Calibration

What are the critical issues?

m/V: Unfavourable?
f_{di}: Unfavourable dilution in the assay?
R: Incomplete and haphazard extraction?
(A-a)/b: Unfavourable dynamic Range A vs a; Low response factor A/b?
a: Constructed Blank or Extrapolated from Calibration Line?
b: Historical Colour Yield or In Run Calibration?
Message #5

Writing down the Model Equation & critically inspecting it tells you a lot 😊
For independent parameters, the second term is absent.

The combined standard uncertainty = reasonable dispersion of measurement results = function of the uncertainty of the component quantities.

Pythagoras: destructive accumulation of noise

\[u^2(y(x_1,x_2,...)) = \sum_{i=1}^{N} \frac{\delta y}{\delta x_i} u_i^2 + 2 \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \left(\frac{\delta y}{\delta x_i} \right) \left(\frac{\delta y}{\delta x_j} \right) c_{i,j} \]

Sensitivity Analysis

Concentrate on what matters = ruggedness

Partial derivatives? Don’t panic: mostly additions/subtractions & multiplications/divisions

For independent parameters, the second term is absent. ☝️
Kragten (or spreadsheet) Method:
The simplest of cases

\[
X = \frac{A \times B}{C}
\]

X: concentration resulting from
A: dilution of the sample
B: measurement
C: calibration factor
Kragten Method: Propagation of error

<table>
<thead>
<tr>
<th>Model</th>
<th>Effect of partial disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = A \times B / C$</td>
<td>u_a u_b u_c</td>
</tr>
<tr>
<td>A a</td>
<td>$a + u_a$ a a</td>
</tr>
<tr>
<td>B b</td>
<td>b $b + u_b$ b</td>
</tr>
<tr>
<td>C c</td>
<td>c c $c + u_c$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation x</th>
<th>x_a x_b x_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_{x,n}^2$</td>
<td>$(x_a - x)^2$ $(x_b - x)^2$ $(x_c - x)^2$</td>
</tr>
<tr>
<td>$\sum u_{x,n}^2$</td>
<td>u²</td>
</tr>
</tbody>
</table>

F. Vanstapel - Measurement Uncertainty
Propagation of error: An Example

A sample is diluted in a reagent mix. At the end point of the reaction the color yield is read, and divided by a calibration factor. That result is multiplied with the dilution factor.

\[y = \frac{x_3}{x_4} \left(\frac{x_1 + x_2}{x_1} \right) \]

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>Value</th>
<th>SI</th>
<th>(u_i/x_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample volume</td>
<td>5 (\mu L)</td>
<td>4%</td>
<td>from pipet control program</td>
</tr>
<tr>
<td>Reagens volume</td>
<td>200 (\mu L)</td>
<td>2%</td>
<td>from pipet control program</td>
</tr>
<tr>
<td>Response Reading</td>
<td>0.7 (\text{cm}^{-1})</td>
<td>0.05%</td>
<td>from equipment specs</td>
</tr>
<tr>
<td>Response Factor</td>
<td>2000 (10^6 \text{L.mol}^{-1} \cdot \text{cm}^{-1})</td>
<td>0.02%</td>
<td>Epistemic variable (literature)</td>
</tr>
</tbody>
</table>

Simulator

contribution to \(u^2 \)
- Sample Volume: 66%
- Reagens Volume: 16%
- Response Reading: 16%
- Response Factor: 2%
Message #6

Don’t be scared 😊 of a Taylor Series 😊

The analysis tells you what to focus on 😊
Approach #3a

Measurement Uncertainty
From Internal Quality Data
There are episodes where results consistently differ from the majority of results?

Do we have a problem?

Simulator
ANOVA of Internal Quality Control Data

<table>
<thead>
<tr>
<th>Component of variation</th>
<th>CV</th>
<th>Comments: Typical sources of variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Cal. Nominal Uncert.</td>
<td>1.0%</td>
<td>Applies to each new calibrator batch</td>
</tr>
<tr>
<td>2 Cal Manipulations</td>
<td>1.0%</td>
<td>Applies to manipulations and conditioning</td>
</tr>
<tr>
<td>3 Between Reagent 1</td>
<td>1.4%</td>
<td>Applies to start-up of new reagent batch</td>
</tr>
<tr>
<td>4 Within Reagent 1</td>
<td>0.7%</td>
<td>Applies to conditioning of individual reagent packs</td>
</tr>
<tr>
<td>5 Between Reagent 2</td>
<td>1.4%</td>
<td>Idem as 1</td>
</tr>
<tr>
<td>6 Within Reagent 2</td>
<td>0.7%</td>
<td>Idem as 1</td>
</tr>
<tr>
<td>7 Maintenance</td>
<td>1.0%</td>
<td>Maintenance</td>
</tr>
<tr>
<td>8 Start-Up procedure</td>
<td>0.0%</td>
<td>Start-Up procedure</td>
</tr>
<tr>
<td>9 Operator</td>
<td>0.0%</td>
<td>Operator dependent variability</td>
</tr>
<tr>
<td>10 Between Run</td>
<td>5.0%</td>
<td>Applies to long-term variability of the analytical system</td>
</tr>
<tr>
<td>10 Within Run</td>
<td>5.0%</td>
<td>Applies to short-term variability of the analytical system</td>
</tr>
<tr>
<td>12 iQC Manipulations</td>
<td>1.0%</td>
<td>Applies to manipulations and conditioning</td>
</tr>
<tr>
<td>Total UM</td>
<td>10%</td>
<td>Uncertainty of measurement</td>
</tr>
</tbody>
</table>

- The effects of calibrations, lots, ... **persistence**
- Certain events are **synchronous**
Message #7

The example was a simulation: nothing abnormal was happening random variation within expectations 😊

ANOVA of iQC data = UM Budget helps you to avoid panic & futile interventions 😊
Approach #3b

Measurement Accuracy
From Proficiency Testing Data
Belgian Proficiency Testing Scheme: Chemistry Calcium

EQAS commutability single manufacturer? not OK
ISO 17511: Hierarchical scheme of traceability

SI-Unit
- Definition of the measurand
 - Certification of RM purity

Primary Calibrator
- Primary reference measurement procedure

Secondary Calibrator
- Secondary reference measurement procedure

Manufacturer’s Master Calibrator
- Manufacturer’s Standing Procedure

Manufacturer’s Product Calibrator
- End-user’s Routine Procedure

Bureau International de Poids et de Mesures
- General Conference on Weights and Measures

National Metrology Institute

Gravimetrically

Accredited Reference Measurement Lab

Reference method

IDMS

Manufacturers Laboratory

Routine method

End User’s Laboratory

Do you feel traceable? Maybe

Do you feel certain? Rather uncertain

F. Vansstable - Measurement Uncertainty
Message #8

The design of proficiency testing is flawed:
- at best they measure “relative” bias
- differences may or may not be attributable to matrix effects

Hence “Proficiency” Schemes:
- document non-commutability of methods or of materials?

The perversion of “Matrix Effects”:
- makes it harder for the lab to switch methods
Summary

Who is paying for this?
Reaping the Fruits
The Economy of your Quality System

Risk

UM = Failure Mode Analysis

Scrap what is redundant
Retain what is relevant
Manage what is critical

Clean Lean Process

mitigate risk
secure supply chain

Reduction in
Quality Failures

Reduction in
Production Costs

Increased Quality / Cost Ratio

F. Vanstapel - Measurement Uncertainty
CONCLUSIONS

UM = Failure-Mode Analysis
 = Risk Analysis Tool 😊

Risk-Mitigation
 = Process-Care Tool 😊

Process-Care
 = Quality at No Cost 😊
CONCLUSIONS

Understanding UM allows

Production Department:
- to focus on what matters
- not to spend resources on futile projects

Interfacing with Prescribers:
- analytical precision suffices 😊
- transmural commutability is a problem 😞
- invest recuperated opportunity costs in test ordering and interpretation support
TO DO

Develop **Rugged Methods**: to reduce waste activities (iQC, etc.)

Commercialize **Commutable Calibrators**: to realize longitudinal coordinated transmural care