A PHYSIOLOGICAL APPROACH TO ONE-LUNG VENTILATION

A. NEYRINCK, MD, PhD
University Hospitals Leuven
OUTLINE

• physiology of lateral decubitus

• goals of one-lung ventilation

• lung collapse

• mechanisms and treatment of hypoxemia

• avoiding lung injury
WELCOME TO...
LATERAL DECUBITUS
Before anaesthesia

After anaesthesia
GOAL OF ONE-LUNG VENTILATION
ONE-LUNG VENTILATION

- OPTIMIZE COLLAPSE
- AVOID HYPOXEMIA
- AVOID LUNG INJURY

PROTOCOLIZED APPROACH
OPTIMIZING LUNG COLLAPSE
OLV

LUNG ISOLATION

to avoid contamination with blood, pus, secretions, lavage

- DLT

LUNG SEPARATION

functional – to optimize surgical exposure

- DLT

LEFT

- lesion left main stem bronchus
- (large thoracic aortic aneurysm)

RIGHT

- bilateral intervention
- pneumectomy
- sleeve lobectomy
- lobectomy
- lung transplantation (SLTX – SSLTX)

LEFT

- ETT – SLT in situ
- unanticipated OLV required during procedure
- (tracheal bronchus)

BB

- segmentectomy
- mediastinal surgery
- esophagectomy
- cardiac surgery
- other non-pulmonary surgery requiring OLV
DEVICE: DLT VERSUS BB

bronchial blocker: deflation of both lungs before inflation of BB

GAS MIXTURE: DE-NITROGENATION

FiO₂ = 0.4

SUCTIONING

Effect of Suction (-20 cmH20) on Lung Collapse

Complete Collapse

10 Min. Lung Collapse Score

Nil

Arndt
(+ = with suction, - = without suction)

DLT

AVOIDING HYPOXEMIA
INCIDENCE

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarhan et al.</td>
<td>1973</td>
<td>25%</td>
</tr>
<tr>
<td>Kerr et al.</td>
<td>1974</td>
<td>24%</td>
</tr>
<tr>
<td>Slinger et al.</td>
<td>1993</td>
<td>8%</td>
</tr>
<tr>
<td>Hurford et al.</td>
<td>1993</td>
<td>9%</td>
</tr>
<tr>
<td>Schwarzkopf et al.</td>
<td>2001</td>
<td>4%</td>
</tr>
<tr>
<td>Brodsky et al.</td>
<td>2003</td>
<td>1%</td>
</tr>
<tr>
<td>Ehrenfeld et al.</td>
<td>2008</td>
<td>10%</td>
</tr>
</tbody>
</table>
SIGNIFICANCE: POCD

increased risk POCD when SctO2 < 65%

Number of patients (%) vs. Minimal absolute SctO2 value:
- <55: 7
- 55-59: 15
- 60-64: 31
- >64: 47
PREDICTION OF HYPOXEMIA

55 y.o. F, Emphysema
FEV1= 28%

60 y.o. M, Lung Ca.
Non-smoker, FEV1= 98
PREDICTION OF HYPOXEMIA

• right versus left thoracotomy/scopy

• elastic recoil
 o low FEV1: airtrapping
 o prevention of atelectasis in dependent lung
 o delayed collapse of non-dependent lung
 o conflicting evidence

• preoperative PaO2
PREDICTION OF HYPOXEMIA: DISTRIBUTION OF PERFUSION
PREDICTION OF HYPOXEMIA: DISTRIBUTION OF PERFUSION

V/Q to the surgical side
PREDICTION OF HYPOXEMIA: END-TIDAL CO2 DIFFERENCE
MECHANISM OF HYPOXEMIA
MECHANISM OF HYPOXEMIA

- right-to-left shunt

Both ventilated areas of the lung and right-to-left transpulmonary shunt are illustrated. The shunt equation can be derived from the information presented in this diagram. V_A, alveolar ventilation.
DETERMINANTS OF HYPOXEMIA

• shunt equation
 ○ $Q_s/Q_t = \frac{(C_cO_2 - C_aO_2)}{(C_cO_2 - C_vO_2)}$
 ○ $C_aO_2 = C_cO_2 - (C_cO_2 - C_vO_2) \cdot (Q_s/Q_t)$

• mixed venous oxygen content
 ○ $C_vO_2 = C_aO_2 - (VO_2/Q_t)$

• $C_aO_2 = C_cO_2 - (VO_2/Q_t) \cdot \frac{(Q_s/Q_t)}{(10(1 - Q_s/Q_t))}$
DETERMINANTS OF HYPOXEMIA

• VO_2 : oxygen consumption (mixed venous saturation)

• Qs/Qt: shunt fraction

• Qt: cardiac output

• CcO_2: haemoglobin content – alveolar ventilation
SHUNT FRACTION

Two-Lung Ventilation vs One-Lung Ventilation

Nondependent Lung:
- Fractional Blood Flow: 40%
- \(P_{aO_2} = 400 \text{ mm Hg} \)
- \(Qs/Qt = 10\% \)

Dependent Lung:
- Fractional Blood Flow: 60%
- \(P_{aO_2} = 150 \text{ mm Hg} \)
- \(Qs/Qt = 27.5\% \)

non-dependent lung

dependent lung
The slopes of the plots are determined by the oxygen content differences between pulmonary end-capillary and the mixed-venous blood (CcO₂ - CvO₂). Note that, for any shunt fraction (Qs/Qt), the CaO₂ is less if CvO₂ (represented in the presence of a constant Hb by venous saturation) is decreased. Values used to plot these relationships are: hemoglobin concentration 15 g/dL, inspired oxygen fraction 0.5, and arterial carbon dioxide partial pressure 40 mmHg.
SHUNT: APPROACH TO NON-DEPENDENT LUNG: HPV

- optimizes V/Q (reduction 40%)
- contraction smooth muscle
- PAO_2 40-100 mmHg
- determinants: PAO_2 and PvO_2
- early response 15 min
- maximal response 4 h
SHUNT: APPROACH TO NON-DEPENDENT LUNG: HPV and ANESTHETIC TECHNIQUE

• Halothane/ Enflurane

• Isoflurane/ Desflurane/ Sevoflurane

• Total Intravenous Anesthesia (TIVA)

• Combined TEA plus General Anesthesia?
SHUNT: APPROACH TO NON-DEPENDENT LUNG

- insufflation
- CPAP
- IPAP (intermittent positive airway pressure)
- modified CPAP
- HFJV
Limited use during thoracoscopic procedures due to decreased visualisation.
SHUNT: APPROACH TO NON-DEPENDENT LUNG: IPAP

- 6 aliquots of 70 ml
- $2\text{I}O_2$ – 2 sec – 8 sec
SHUNT: APPROACH TO NON-DEPENDENT LUNG: MODIFIED CPAP

Ku et al. JCVA 2009; 23: 850-852
SHUNT: APPROACH TO NON-DEPENDENT LUNG: HFJV

• one-lung ventilation
 o air-trapping
 o improved RV function

• as alternative for CPAP
 o optimal exposure

• to avoid one-lung ventilation (2-lung HFJV)
 o lower peak pressures

• Settings:
 o frequency +/- 180
 o pressure 1.8 – 2.2 bar
 o higher PCO2 levels
SHUNT: DEPENDENT LUNG

- HIGH TIDAL VOLUMES WITHOUT PEEP
- LOW TIDAL VOLUMES WITH PEEP
- RECRUITMENT BEFORE OLV

- PEEP
 - effect not predictable
 - evaluate oxygenation/compliance
SHUNT: APPROACH TO DEPENDENT LUNG: PEEP

SHUNT: APPROACH TO DEPENDENT LUNG: PEEP

Lower Inflection Point

Auto-PEEP
SHUNT: APPROACH TO DEPENDENT LUNG: PEEP

- Total PEEP increases less
- Dynamic hyperinflation
 - Shunt
 - Hemodynamic collapse
- Response not predictable

Graphical Representation:

- **Lower Inflection Point**
- **Total PEEP**
- **Auto-PEEP**

Axes:
- **Volume (L.)**
- **Pressure (cm H2O)**

Graph Notes:
- The graph illustrates the relationship between pressure and volume, highlighting the points at which different PEEP levels are applied.
SHUNT: APPROACH TO DEPENDENT LUNG: PEEP

- Auto-PEEP
- Lower Inflection Point
SHUNT: APPROACH TO DEPENDENT LUNG: PEEP

- Total PEEP increases more
- Improved oxygenation
SHUNT: APPROACH TO DEPENDENT LUNG: PEEP

PEEP-responders (>20%)
PEEP-NON-responders

not studied if PO2<60mmHg
prediction not possible
no recruitment maneuvers

The effect of PEEP* on several cardiovascular performance parameters. Part A summarizes values from the entire patient population, while part B summarizes values from the subpopulation of 20 patients in whom the FloTrac™/Vigileo™ monitor was utilized. Values are presented as mean ± SEp (pooled standard error).

*Positive end expiratory pressure; †Heart rate; ‡Mean arterial blood pressure; §Cardiac stroke volume; ‖Cardiac index; PEEP - Positive end-expiratory pressure.
SHUNT: APPROACH TO DEPENDENT LUNG: PEEP

• PEEP improves oxygenation

• mandatory when using lower volumes

• effect not predictable

 o observe clinical effect on oxygenation
 o observe improvement in compliance
SHUNT: APPROACH TO NON-DEPENDENT LUNG: RECRUITMENT

BEFORE OLV (2-LUNGS)

RECRUITMENT

20 – 40 cmH2O
- followed by PEEP
- improves oxygenation
- reduces inflammation
- transient decrease in CO – significance?
- repeated recruitment?

NON-DEPENDENT LUNG (OLV)

DEPENDENT LUNG (OLV)

Unzueta et al BJA 2012
Park et al EJA 2011; 28: 298-302
TV 10 ml/kg
TV 5 ml/kg PEEP 5
TV 5 ml/kg PEEP 0

NO RECRUITMENT MANEUVERS!
SHUNT: DEPENDENT LUNG – VASODILATORS (NO)

<table>
<thead>
<tr>
<th>Study</th>
<th>Concentration</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson et al 1997</td>
<td>40 PPM</td>
<td>no decrease in PVR no improvement oxygenation</td>
</tr>
<tr>
<td>Fradj et al 1999</td>
<td>20 PPM</td>
<td>no decrease in PVR no improvement oxygenation</td>
</tr>
<tr>
<td>Rich et al 1994</td>
<td>20 PPM</td>
<td>decrease in PVR when light PH (25-35 mmHg)</td>
</tr>
<tr>
<td>Moutafis et al 1997</td>
<td>20 PPM + Almitrine (16y)</td>
<td>improved oxygenation</td>
</tr>
</tbody>
</table>

no effect on PAP and oxygenation in absence of hypoxia or PH excessive vasodilation by isoflurane or thoracic epidural?
EFFECT OF CARDIAC OUTPUT AND APPROPRIATE MANAGEMENT
The values used to plot these relationships are a FiO₂ of 0.5 and PaCO₂ 40 mmHg. Plot A: Hb 15 g/dl, VO₂ 150 ml/min, Qs/Qt 0.2; Plot B: Hb 15 g/dl, VO₂ 150 ml/min, Qs/Qt 0.4; Plot C: Hb 15 g/dl, VO₂ 75 ml/min, Qs/Qt 0.4; Plot D: Hb 10 g/dl, VO₂ 150 ml/min, Qs/Qt 0.2.

The values used to plot these relationships are at FiO₂ of 0.5 and PaCO₂ 40 mmHg. The curves have similar conditions to those specified in Fig. 4. Construction of this relationship used a lookup table in Excel relating CaO₂ to saturation for a particular Hb and then using an oxygen dissociation curve to relate saturation to PaO₂.
CARDIAC OUTPUT

PaO2

Qs/Qt

SvO2

100

Cardiac Output %
CARDIAC OUTPUT

• excessive increase in cardiac output

 o \uparrowMvSO$_2$ \rightarrow \downarrowHPV

 o \uparrowPAP \rightarrow \uparrow perfusion of non-ventilated areas \rightarrow \downarrowHPV

 o inotropes \rightarrow \downarrowHPV
EFFECT OF OXYGEN CONSUMPTION AND APPROPRIATE MANAGEMENT
OXYGEN CONSUMPTION

- lower oxygen consumption: higher \(\text{MvSO}_2 \)

- high dose anesthetics beneficial
 - \(<>\) decrease in cardiac output
 - high opioids – low anesthetic

- inotropes
 - increase oxygen consumption
 - \(<>\) effect on cardiac output more pronounced
EFFECT OF CcO2 AND APPROPRIATE MANAGEMENT
HEMOGLOBIN CONCENTRATION

- effect on CcO$_2$

The values used to plot these relationships are a FiO$_2$ of 0.5 and PaCO$_2$ 40 mmHg. Plot A: Hb 15 g/dl, VO$_2$ 150 ml/min, Qs/Qt 0.2; Plot B: Hb 15 g/dl, VO$_2$ 150 ml/min, Qs/Qt 0.4; Plot C: Hb 15 g/dl, VO$_2$ 75 ml/min, Qs/Qt 0.4; Plot D: Hb 10 g/dl, VO$_2$ 150 ml/min, Qs/Qt 0.2.

The values used to plot these relationships are at FiO$_2$ of 0.5 and PaCO$_2$ 40 mmHg. The curves have similar conditions to those specified in Fig. 4. Construction of this relationship used a lookup table in Excel relating CaO$_2$ to saturation for a particular Hb and then using an oxygen dissociation curve to relate saturation to PaO$_2$.
HEMOGLOBIN CONCENTRATION

- effect on CcO_2

- hemodilution
 - decreases PO_2 in COPD patients
 - effect on shunt - HPV?

- higher hematocrit (45%)
 - predicts low PO2
 - polycythemia due to higher shunt?
ALVEOLAR VENTILATION AND FiO2

- effect on CcO₂
- \[PAO₂ = PiO₂ - (PaCO₂/RQ) \]

- increasing FiO₂
- (increasing alveolar ventilation)
- <= lower cardiac output
- <= increased shunting
- <= protective ventilation
EFFECT OF TEA

• decrease in CO (sympathicolysis)
• decrease in HPV
• effect still unknown
• less influence when low dose LA and maintenance of CO
• ropivacaine 0.75%: ↓PO2
• dexmedethomidine: ↑PO2
AVOIDING LUNG INJURY
EVIDENCE OF LUNG INJURY

- epithelial lining fluid /broncho-alveolar lavage/systemic
EVIDENCE OF LUNG INJURY

- one-lung ventilation induces
 - systemic inflammation
 - pulmonary inflammation dependent lung
 - pulmonary inflammation non-dependent lung
 - indication for neutrophilic injury
 - duration of one-lung ventilation
 - 100 – 300 min.
 - Peak AwP > 35 CmH2O
MECHANISM OF LUNG INJURY

Atelectrauma (open lung concept)
- Repetitive opening and closure of atelectatic zones
- Recruitment and PEEP

Overdistention (baby lung)
- Volutrauma in functional reduced lung volume
- Reduction in tidal volume

Zone of over-distension
Zone of atelectasis
LUNG INJURY IS MULTIFACTORIAL

- VENTILATION
- EXCESS FLUID ADMINISTRATION
- ANATOMICAL RESECTION
- INFLAMMATION
- CAPILLARY LEAK INTERSTITIAL FLUID
- REDUCED PULMONARY VASCULAR BED
- RIGHT HEART FAILURE
- REDUCED LYMPH FLOW
- ALI/ARDS
- NODAL DISSECTION
MECHANISM OF LUNG INJURY OLV

VENTILATED LUNG

- hyperoxia
 - reactive oxygen species
 - oxygen toxicity
- hyperperfusion
 - endothelial damage
 - vasculare pressure
- ventilatory stress
 - volutrauma
 - atelectrauma
 - barotrauma

COLLAPSED LUNG

OLV

- ischemia/reperfusion
- reexpansion
- cytokine release
- altered redox state

Surgery

- manipulation trauma
- lymphatic disruption

SYSTEMIC

cytokine release
- reactive oxygen species
- overhydration
- chemotherapy/radiation

ARDS/ALI
MECHANISM OF LUNG INJURY OLV: RISK FACTORS

• **PATIENT**
 - poor postoperative predicted lung function
 - preexisting lung injury
 - trauma
 - infection
 - chemotherapy
 - ethanol abuse
 - female gender

• **PROCEDURE**
 - lung transplantation
 - major resection (pneumonectomy > lobectomy)
 - esophagectomy – fluid administration
 - transfusion
 - prolonged OLV (>100 min) Peak pressure > 35-40 cmH2O
 - plateau pressure > 25 cmH2O
MECHANISM LUNG RE-EXPANSION

- Low FiO2!
- Gradual opening!
MECHANISM OF LUNG INJURY: HISTORICAL FACTS AND PITFALLS

• **high tidal volumes** 10 – 15 ml/kg
 o oxygenation
 o “end-inspiratory alveolar recruitment”

• **PPE** (postpneumonectomy pulmonary edema)

• low tidal volume in **ARDS** is beneficial

• **outcome**? surrogate markers

• effect of protective lung ventilation on **healthy lungs**
<table>
<thead>
<tr>
<th>protective OLV</th>
<th>conventional OLV</th>
<th>OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV (ml/kg) – FiO2 – PEEP (cmH₂O)</td>
<td>TV (ml/kg) – FiO2 – PEEP (cmH₂O)</td>
<td></td>
</tr>
<tr>
<td>Ahn et al. Anaesth Intensive Care 2012</td>
<td>6 – 0.5 - 5</td>
<td>10 – 1 - 0</td>
</tr>
<tr>
<td>Yang Chest 2011</td>
<td>6 – 0.5 – 5 VCV</td>
<td>10 – 1 – 0 PCV</td>
</tr>
<tr>
<td>Licker Crit Care 2009</td>
<td>5 – 0.6 - 6</td>
<td>7 – 0.6 - 3</td>
</tr>
<tr>
<td>Schilling A&A 2005</td>
<td>5 - 0.8 - 0</td>
<td>10 – 0.8 - 0</td>
</tr>
</tbody>
</table>
CONFLICT BETWEEN OXYGENATION AND PROTECTIVE VENTILATION?

OLV

$V_T = 8 \text{ ml kg}^{-1}$
PEEP = 5 cm H$_2$O

15 min

T0 (baseline)

Randomization

Group A

High volume
$V_T = 8 \text{ ml kg}^{-1}$
PEEP = 5 cm H$_2$O

Low volume
$V_T = 5 \text{ ml kg}^{-1}$
PEEP to keep the same P_{plat}

Group B

Low volume
$V_T = 5 \text{ ml kg}^{-1}$
PEEP to keep the same P_{plat}

10 min

T1

10 min

T2

Lower PO2

KU LEUVEN

Rozé BJA 2012
PROTECTIVE LUNG STRATEGY

- low tidal volume
 - 4-6 ml/kg

- PEEP
 - 5-10 cmH2O

- PROTECTIVE
 - lower shunt fraction
 - improved oxygenation
 - less atelectasis
 - lower cytokine release

Yang et al Chest 2011; 139: 530-537
Lung recruitment maneuver before OLV and ventilation with a V_T of 5 ml/kg during OLV is associated with a more homogeneous distribution of lung tissue in the dependent ventilated lung.
MODE OF VENTILATION

• up to date no clear benefit for PCV or VCV

• more homogeneous distribution with PCV?

• historical impact of limited AwP
MODE OF VENTILATION

MODE OF VENTILATION

P_{peak} (cm H$_2$O)

VCV
PCV

$P<0.0001$

Respirator
Bronchial

HYPERCAPNIA?

- consequence of protective ventilation
- reduces inflammation
 - subset analysis of ARDS Network
 - ↓alveolar-systemic cytokine release
 - ↓neutrophil accumulation
 - ↓radical injury
- improves tissue oxygenation
- improves SjO2 (50 mmHg)
- hypcapnia: induces acute parenchymal lung injury
EFFECT OF ANESTHETICS ON INFLAMMATION

• VOLATILE ANESTHETICS REDUCE INFLAMMATION
 o sevoflurane vs propofol
 • ↓plasma IL-6
 • Lee JCTVA 2012
 • ↓BAL IL-6
 • Sugasawa J Anesth 2012
 • ↓BAL IL-6, TNF-a, IL-8
 • De Conno Anesthesiology 2009
 o isoflurane vs propofol
 • ↓plasma and BAL IL-8 and TNF-a
 • Mahmoud Anesthesiol Res Pract 2011
EFFECT ON CLINICAL OUTCOME?
TAILORED - PROTOCOLIZED APPROACH
ONE SIZE DOES NOT FIT ALL
<table>
<thead>
<tr>
<th>parameter</th>
<th>target</th>
<th>remark</th>
</tr>
</thead>
</table>
| FiO2 | 0.9 - reduce to 0.5 if possible (after onset of HPV) | • adjust 5 min prior to OLV
• less inflammation with lower FiO2
• re-inflation of non-dependent lung with air + recruitment |
| Tidal Volume | 4-6 ml/kg | • reduce stretch |
| Respir Rate | increase to maintain MV | • cave: increased Vd: higher RR necessary to maintain Va
• cave: airtrapping if inadequate E-time: decrease RR
• obstructive: I:E = 1:3 / restrictive: I:E = 1:1 |
| Pplat AwP | limit to 25-30 cmH20 | • allow hypercapnia if necessary
• air leak with BB when higher than 25 cmH20 |
| PEEP | 5-10 cmH20 | • titrate to oxygenation (LIP)
• reduces atelectasis – shear-stress
• consider auto-PEEP
• consider recruitment |
| PCO2 | 40 – 60 mmHg | • permissive hypercapnia is protective
• permissive hypercapnia in case of airtrapping or high Pplat AwP |
| ventilatory mode | PCV - VCV | • until now, no evidence for beneficial effect of a specific mode. allow PpeakAwP to be higher during VCV
• cave: pressure in circuit is higher than alveolar pressure. |
HYPOXIA

1. increase FiO2 to 1.0
2. check position DLT/BB
3. optimize cardiac output
 • preload: 250-500 CC colloids
 • contractility
 • arrhythmias
4. recruitment dependent lung
 • AwP 20-30 cmH2O during 30 sec
 • followed by PEEP
 • cave: reduction in C.I.
5. optimize PEEP dependent lung towards LIP (↑ or ↓)
6. CPAP to non-dependent lung
 • recruitment first
 • 5-10 cmH2O
 • NOT during VATS (surgical exposure)
7. intermittent inflate non-dependent lung (communicate with surgeon)
8. partial ventilation of non-ventilated lung
 • lobar re-inflation
 • selective lobar collapse (BB)
 • oxygen insufflation (consider insufflation in surgical field, cave combustion)
 • (high frequency ventilation)
9. reduce blood flow to non-ventilated lung
 • clamping of pulmonary artery (cave increased afterload to right ventricle)
 • (inhaled NO) (lowering IV or inhalational anesthesia)
10. maintain oxygen carrying capacity
11. (ECMO as rescue)

MILD/GRADUAL (90%)

SEVERE (<85%)

1. resume 2-lung ventilation
2. (communicate with surgeon)
3. increase FiO2 to 1.0
4. check position DLT/BB

KU LEUVEN
THANK YOU