

Integration of digital microscopy and flow cytometric analysis of solid elements in urine:

The best of both worlds and the gate to total automation

Critically Appraised Topic

Author: Thibault Vanhove Supervisor: dr. Jaak Billen

Date 06/09/2022

Why this topic?

Current practice?

Replacement of Urinalyzers Manufacturer // Distributer Wear and Tear

Wet Overheidsopdrachten 17/06/2016

Test strip & Digital microscopy Technological innovation Manual microscopic review rate

I. Traditional Urinalysis

- II. Urine Flow Cytometry (UFC)
- III. Remarks on UFC

- A. Foreword
- B. Chemical Urinalysis
- C. Urine Concentration
- D. Sediment Manual Microscopy
- E. Automated Urine Particle Analysis

I/A Foreword

- Simple, expeditious, elementary, reliable, safe, cost-effective
- Physical, chemical and microscopic assessment
- Disease screening and diagnosis, therapy effectiveness evaluation
- Color, clarity and odor (historical)
- Pre-analytical conditions
 - Speciment collection, container, transport and storage
 - [-] Light, metabolisation, pH alteration, lysis
 - Freshness (< 2 h)
 - Well-mixed, first morning, uncentrifuged, 15-25°C specimen.

I/B Chemical Urinalysis

		-	
Urine component	Testing principle	Indications	Pitfalls
Leukocytes	Leukocyte esterase (lysed WBC) Granulocyte specific	Infections, urinary stones, inflammation	F+: drugs, strongly colored urine (red beets, bilirubin), oxidizing agents, formaldehyde, sodiumazide (preservative) F-: acidic or alkalic pH, ascorbic acid (vitamin C), high protein (>5 g/L) or glucose concentrations, drugs ¹
Nitrite	Nitrate reductase (bacterial)	Infections (E. coli, Klebsiella, Proteus, Citrobacter)	F+: strongly colored urine F-: ascorbic acid, alkaline pH, low urinary nitrate, non-nitrite reducing bacteria (S. saprophyticus, Enterococci, Pseudomonas, Acinetobacter, etc.)
Erythrocytes / Hemoglobin	Hemoglobin peroxidase (lysed RBC) Differential color development due to hemoglobin or intact erythrocytes	Hematuria due to kidney damage (e.g. glomerulonephritis), infection, kidney or bladder stones, malignancies, or blood disorders	F+: myoglobinuria (due to muscle damage), oxidizing agents, bacteria F-: inability to hemolyze RBCs due to acidic or alkaline urine, ascorbic acid, high nitrite concentration, high urine density, formaldehyde
Protein	Presence of albumin (pH indicator error)	Kidney damage, harmless physiological phenomena (posture-related, exercise)	F+: alkaline pH, drugs, heavily pigmented urine, drugs ² , contrast media F-: albumin concentrations below 300 mg/L, microproteinuria, tubular protein, Bence Jones- proteinuria
Glucose	Glucose oxidase/peroxidase	Glucosuria (tubular reabsorption limit in young adults ~ 1.8 g/L), renal diabetes	F+: oxidizing agents F-: ascorbic acid, UTI, acidic urine (keto acidosis, aspirin usage), reducing sugars (galactose, fructose, etc)
Ketones	Legal reaction (Acetoacetate, acetone)	Fatty-acid oxidation (ketosis), ketoacidosis (diabetes, chronic alcoholism, etc.), physiological (exercise, fasting)	F+: drugs ³ F-: pre-analytical storage
рН	Universal pH indicator	Kidney or urinary tract disorder	Alkaline pH due to bacterial growth (bacterial urease), dietary (vegetables), Fanconi syndrome (aminoaciduria), cast-forming due to alkalic urine Acidic pH due to dietary (meat, cranberries)
Urobilinogen	Ehrlich reaction	Impaired liver function, increased hemoglobin degradation (hemolytic anemia)	Decreased urobilinogen may indicate a blockage in the bile duct system or bile production failure.
Bilirubin	Ehrlich reaction	Hemolysis, liver damage or disease (jaundice).	F+: rifampicin
Creatinine	Benedict-Behre method	Kidney diseases	F-: ketone bodies, ascorbic acid (> 200mg/dL)
P/C A/C	Protein/Creatinine ratio Albumin/Creatinine ratio	Higher sensitivity for A/C ratio than conventional protein dipstick.	Albumin dipstick ~ 10-150 mg/L
Specific gravity	Refractometry	Urine concentration	F+: intravenous contrast media

I/B Chemical Urinalysis

Urine component	Testing principle	Pitfalls
Leukocytes	Leukocyte esterase (lysed WBC) Granulocyte specific	F+: drugs, strongly colored urine (red beets, bilirubin), oxidizing agents, formaldehyde, sodiumazide (preservative) F-: acidic or alkalic pH, ascorbic acid (vitamin C), high protein (>5 g/L) or glucose concentrations, drugs ¹
Nitrite	Nitrate reductase (bacterial)	F+: strongly colored urine F-: ascorbic acid, alkaline pH, low urinary nitrate, non-nitrite reducing bacteria (S. saprophyticus, Enterococci, Pseudomonas, Acinetobacter, etc.)

¹Cefalexine, cephalothin, nitrofurantoin, tetracycline, tobramycin

I/B Chemical Urinalysis

- Automated reagent test strip readers (operator subjectivity)
- Reflectometry
- Complementary metal oxide semiconductor (CMOS) technology

I/C Urine Concentration

- Urine creatinine, osmolality, specific gravity
- Hydrometry, harmonic oscillation, osmometry, refractometry

I/D Sediment – Manual Microscopy

	Urine component	Indication	Morphology	Note
	Erythrocytes	Kidney disease, a blood disorder or another underlying medical condition, such as bladder cancer Temporary erythrocyturia in children not uncommon (unsignificant)	 Tonicity of urine: Echinocyte or burr cell (hypertonic), Bloating or lysis (hypotonic) Glomerular and non-glomerular hematuria: Dysmorphic; acanthocyte (renal hematuria; glomerulonephritis), polymorphic (urologic hematuria) 	Lysis due to sample freshness, alkaline pH, low osmolality, casts due to glomerulonephritis
2	Leukocytes	Infections (UTI)	In conjunction with possible microorganisms. Glitter cells in hypotonic condition; polymorphonuclear neutrophils with granules showing a Brownian movement. Eosinophils in drug induced interstitial nephritis.	Casts due to UTI Sterile pyuria exists in kidney tuberculosis, polycystic kidneys, malignancies Eosinophils require staining (Hansel)
	Epithelium	Physiological conditions UTI, inflammation Kidney damage	Superficial urothelium : squamous epithelium Deeper layers urothelium: 'small round cells' Tubular epithelium	
	Casts (cylinders)	Kidney disorders, physiological conditions	 Hyaline casts: consist of Tamm-Horsfall protein secreted by urothelium, can be exercise-related Cellular casts: kidney pathology; erythrocyte cast (glomerulonephritis), leukocyte cast (pyelonephritis) Granular casts: kidney disorder; due to autolysis (granulation) Wax casts: severe chronic kidney disease (diabetic nephrosclerosis, nephrotic syndrome); denaturation of plasma proteins in tubuli (associated with proteinuria) 	Fragile and brittle particles
	Crystals	Kidney stones: trivial, pathological, drug induced	 Trivial crystals and amorph deposits (calcium oxalate, urate, phosphate) Drug induced: e.g. indinavir, sulfamethoxazole-trimethoprim, ciprofloxacin Pathological: cystinuria (hexagonal), xanthine, leucine, tyrosine 	Diuresis, dietary, urinary pH
É.	Oval fat bodies	Lipoid nephrosis	Oval fat bodies due to leakage of plasma lipoprotein Cholesterol crystals (polarization microscopy)	Also isolated small fat droplets in sediment
روريع.	Mucine threads	Physiological condition	Urothelium coated with mucin threads	
	Organisms	Bacteria, yeast, fungi, parasites	Infections	Contamination, worm eggs

I/D Sediment – Manual Microscopy

I/E Automated Urine Particle Analysis

- Automated microscopic pattern recognition (1), Flow cytometry (2)
- Techniques: impedance, digital imaging, light scatter, dyes, fluorescence
- [+] User convenience, productivity, specimen preparation, low sample volume
- [-] Populations with high prevalence of nephropathology
- Combination test strips + automated particle analysis
- Visual microscopy remains necessary (reviews)
- Ongoing morphologist competence assessment

- I. Traditional urinalysis
- II. Urine Flow Cytometry (UFC)
- III. Remarks on UFC

- A. Stains, Channels and Laser Beams
- B. Diagrammatic Illustrations
- C. Parameters and Properties

II/A Stains, Channels and Laser Beams

SF ch

The SF channel uses signal waveform information about particles, in addition to the scattered light intensity, signal width, etc., which improves its analysis performance for particles like casts.

The exclusive diluent UF CELLPACK™-SF dissolves amorphous salts and disperses mucus, both of which interfere with the measurements.

The exclusive stain UF Fluorocell™-SF then stains membrane components of red blood cells, cast matrix, etc.

CR ch

The CR channel enables high level cell analysis through the combined use of multiple characteristics like scattered light signal width, scattered light signal waveform area and fluorescent signal waveform area.

The exclusive diluent UF CELLPACK^m-CR lyses or dissolves red blood cells and crystals, which interfere with the classification of particles in urine. On the other hand, white blood cells and epithelial cells are not lysed.

The surfactant in this diluent creates fine pores on the cell membranes and the polymethine dye in UF FluorocelI™ CR enters through these pores to stain nucleic acids in the cells.

II/B Diagrammatic Illustrations

• Red blood cells & Crystals

• Casts

• Nucleic acid containing particles

White blood cells & Clumps, Epithelial cells

Atypical Cells

Bacteria, Yeast-like cells and Sperm

- I. Traditional urinalysis
- II. Urine Flow Cytometry (UFC)
- III. <u>Remarks on UFC</u>

Pro & Con

- A. Next-generation particle analyzer
- B. Applications
- C. Value of (digital) microscopy
- D. Implementation

III/A Next-generation particle analyzer

- Clinical application: User-defined rules & Guideline-based disease profiles
- Precise and accurate counting, Capacity and quality (> manual microscopy count)
- Fragile particles (e.g. casts) are not damaged

III/B Applications

- Screening of urinary tract infections
- Diagnosis and monitoring of nephrological/urological conditions
 - Origin of hematuria, renal disease
- Bacteria differentiation scattergram
 - [+] Preliminary Gram differentiation
 - [-] Viable and dead bacteria / non-culturable bacteria.
- Reduction of bacterial cultures (+/- 75%)
 - [+] Negative predictive value ~> cultuur (CLED)
 - [-] Rudimentary, subjective, time-consuming and having poor NPV
 - \rightarrow Acceptance ratio false-negatives?

- Microscopic examination
 - Physician's request
 - Laboratory-defined abnormalities
 - Analyzer indicated abnormalities
- Unambiguous identification of parameters (Microscopy vs UFC)
 - Casts, non-squamous epithelial cells, dysmorphic erythrocytes, fungi, parasites and clinically significant crystals

Indications & Publications

• Example: iso- vs dysmorphic RBCs

Flag? \rightarrow Review

• Example: Crystals

Flag? → Review

Class 4 (maximum diameter: 16-36 µm)

Class 5 (maximum diameter: 36 - 71 µm)

75 µm

100 µm

Class 7 (maximum diameter: 101-151 µm)

• Example: Casts

Flag? \rightarrow Review

Class 5 (maximum diameter: 36-71 µm)

• Example: Non-squamous epithelial cells

Flag? → Review

75 µm

III/D Implementation

- [+] Reduction of microscopic reviews based on user-definable decision-rules
- [+] Quality of test results
- [+] Reduction time (workload) and cost (unnecessary empirical treatment)

Conclusion

Improvements and Innovation in Urinalysis

Improvements and Innovation in Urinalysis

- Pre-analytical conditions
- Integration of techniques
 - Test strip: Reflectometry / CMOS technology
 - Concentration parameters
 - Digital microscopy
 - Flow Cytometry

• Automated analytical systems

- Reduction of turnaround time
- Avoid treatment
- Time-saving effect frees resources for additional samples (expertise samples)
- Generation of reproducible results with standardized procedures
- Laboratory workflow

Actions / To Do's

- 1. Validation and implementation of new analyzers
- 2. Determination of screening method to rule out an UTI
- 3. Reviewing current modality of requesting and reporting
 - Reimbursement test strip and pitfalls
 - Trivial urinalysis vs Nephrological/Urological conditions

Integration of digital microscopy and flow cytometric analysis of solid elements in urine:

The best of both worlds and the gate to total automation

Critically Appraised Topic

