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Congenital heart defects (CHDs) have a neonatal incidence of  
0.8–1% (refs. 1,2). Despite abundant examples of monogenic CHD 
in humans and mice, CHD has a low absolute sibling recurrence 
risk (~2.7%)3, suggesting a considerable role for de novo mutations 
(DNMs) and/or incomplete penetrance4,5. De novo protein-
truncating variants (PTVs) have been shown to be enriched 
among the 10% of ‘syndromic’ patients with extra-cardiac 
manifestations6,7. We exome sequenced 1,891 probands, including 
both syndromic CHD (S-CHD, n = 610) and nonsyndromic CHD 
(NS-CHD, n = 1,281). In S-CHD, we confirmed a significant 
enrichment of de novo PTVs but not inherited PTVs in known 
CHD-associated genes, consistent with recent findings8. 
Conversely, in NS-CHD we observed significant enrichment of 
PTVs inherited from unaffected parents in CHD-associated genes. 
We identified three genome-wide significant S-CHD disorders 
caused by DNMs in CHD4, CDK13 and PRKD1. Our study finds 
evidence for distinct genetic architectures underlying the low 
sibling recurrence risk in S-CHD and NS-CHD. 

We evaluated the burden of high-confidence DNMs within S-CHD 
and NS-CHD trios separately (nS-CHD = 518, nNS-CHD = 847). We 
classified DNMs into three distinct categories: PTVs (nonsense, 

frameshift and splice-site variants), missense variants (including  
in-frame insertions or deletions (indels)) and silent mutations. We com-
pared the observed numbers of DNMs to those expected under a null 
mutational model9 across a set of manually curated CHD-associated  
genes, non-CHD developmental-disorder-associated genes and 
all remaining protein-coding genes (Supplementary Tables 1–3  
and Fig. 1a). S-CHD probands showed the largest excess of de novo 
PTVs (27 variants, odds ratio (OR) = 81, P = 1.21 × 10−43) and  
de novo missense variants (22 variants, OR = 8.6, P = 7.35 × 10−15) for 
autosomal dominant CHD genes (Supplementary Table 4). S-CHD 
probands also manifested a burden of de novo PTVs in autosomal 
dominant developmental-disorder-associated genes not currently 
associated with CHD (12 variants, OR = 18.4, P = 3.49 × 10−13). In 
contrast, NS-CHD probands presented with a much lower burden 
of de novo PTVs in CHD-associated genes (4 variants, OR = 7.3,  
P = 2.61 × 10−4). Finally, we found a significant exome-wide excess 
of de novo missense but not silent mutations (after excluding CHD 
and developmental-disorder-associated genes) in both S-CHD and 
NS-CHD probands, suggesting additional undiscovered dominant 
CHD-associated genes. The excess of de novo PTVs in S-CHD cases 
reported here is of the same magnitude as that found in cases of severe 
developmental disorders without CHD and considerably higher than 
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Figure 1  Burden of de novo and inherited 
variants in NS-CHD compared to S-CHD.  
(a) Excess of DNMs compared to null mutation 
model. Excess of DNMs was computed as the 
ratio of the observed number of DNMs over  
the expected number given random mutation 
using a null gene-wise mutation rate model.  
P values were computed using a Poisson  
model parameterized by the cumulative 
mutation rate across the gene set for the  
same number of probands (nS-CHD = 518, 
nNS-CHD = 847). We stratified by variant 
consequence and within known autosomal 
dominant CHD genes (n = 78), autosomal 
dominant developmental-disorder-associated 
genes excluding autosomal dominant CHD  
genes (DD-non-CHD, n = 203) and all 
autosomal protein-coding genes excluding 
autosomal dominant developmental-disorder 
and CHD genes (n = 17,404). No data are 
shown for silent variants in CHD genes for 
syndromic probands, as no variants were 
detected. (b) Comparison of exome-wide  
excess of DNMs (compared to a null background 
mutation rate model) across different diseases stratified by variant consequence. (c) Excess of rare inherited variants (nS-CHD = 471, nNS-CHD = 663) 
compared to 12,031 controls of matched ancestry. Excess of DNMs was computed as the ratio of observed number of rare inherited variants to expected 
numbers as seen in controls. (d) Counts of de novo PTVs in S-CHD probands and rare inherited (INH) PTVs in NS-CHD probands in known monoallelic 
CHD-associated genes. Error bars represent 95% confidence interval.

that found in autism spectrum disorder (Fig. 1b and Supplementary 
Table 5). The marked difference in DNM burden between NS-CHD 
and S-CHD confirms findings in a recent study by Homsy et al.8 of 
differences in mutational burden in CHD cases with and without 
neurodevelopmental deficits, which are by far the most common 
extra-cardiac manifestations. These differences in burden addition-
ally mirror those observed in autism between individuals with and 
without intellectual disability10.

To evaluate the contribution of incompletely penetrant inherited 
variants, we compared the burden of rare (minor allele frequency 
(MAF) < 0.1%) inherited variants in the above described gene sets 
in S-CHD and NS-CHD cases of European ancestry to population-
matched controls (n = 12,031, Supplementary Fig. 1, Supplementary 
Table 6 and Fig. 1c). We observed a significant excess of rare inher-
ited PTVs in autosomal dominant CHD-associated genes in NS-CHD  
(17 variants, OR = 2.67, P = 1.1 × 10−4), but not in S-CHD (P = 0.3).  
The CHD-associated genes with inherited PTVs in NS-CHD 
(Supplementary Table 7) have previously been linked only with non-
syndromic or syndromic presentations with variable presentations 
and were nonoverlapping with genes with de novo PTVs in S-CHD 
(Fig. 1d). Nonsyndromic presentations of inherited PTVs in several 
genes originally associated with S-CHD have been described previ-
ously (for example, JAG1 and TBX5)11,12. Moreover, we observed an 
exome-wide excess of rare inherited PTVs (3,318 variants, OR = 1.08, 
P = 1.51 × 10−5) in NS-CHD probands, even after excluding known 
CHD-associated and developmental-disorder-associated genes, sug-
gested incomplete penetrance in additional, novel CHD-associated 
genes. We did not observe this exome-wide excess in the S-CHD 
cohort (P = 0.8), suggesting a more appreciable role for incomplete 
penetrance in NS-CHD than in S-CHD.

Using a previously described null mutation model6,9, we evaluated 
individual genes for an excess of de novo PTVs and de novo missense 
variants separately using a high-sensitivity set of candidate DNMs 
and defining genome-wide significance as P < 1.3 × 10−6. When  
considering all CHD trios (S-CHD and NS-CHD), including cases 

with mutations in known developmental-disorder- or CHD-associated 
genes, we identified 11 genes with genome-wide significance. When 
we stratified by syndromic status, we found no genes at genome-
wide significance in the NS-CHD cohort. Conversely, we found the 
aforementioned 11 genes and one additional gene at genome-wide 
significance in the S-CHD cohort, in line with the increased burden 
of de novo PTVs in this cohort (Table 1, Supplementary Table 8 
and Fig. 2a). Nine of the 12 genes with genome-wide significance 
are known to be associated with developmental disorders, although 
not all were previously implicated in CHD. These findings expand 
the known phenotypic spectrum of several genes (for example,  
S-CHD cases with de novo mutations in TAB2, previously described 
only in NS-CHD)13; however, larger genotype–phenotype studies 
are needed to fully characterize the phenotypic spectrum associated 
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Table 1  Genes with genome-wide significant enrichment of  
de novo mutations in the S-CHD cohort

Gene
DNMs  

(PTV or missense)
Missense  
clustering

P (S-CHD)  
(n = 518)

P (unresolved)  
(n = 398)

PTPN11a,b 7 (0/7) Yes 7.29 × 10−16 NA

ANKRD11  a,b 5 (5/0) No 8.50 × 10−13 NA

CDK13 6 (0/6) Yes 2.26 × 10−12 4.73 × 10−11

ADNP   a,b 4 (4/0) No 1.29 × 10−11 NA

NSD1  a,b 6 (4/2) Yes 2.77 × 10−11 NA

PACS1a,b 3 (0/3) Yes 2.32 × 10−09 NA

KMT2A  a,b 5 (4/1) No 2.74 × 10−09 NA

TAB2  b 3 (3/0) No 4.19 × 10−09 NA

DYRK1A  a 4 (3/1) No 5.99 × 10−09 NA

DDX3X   a 4 (2/2) No 1.69 × 10−08 NA

CHD4 5 (0/5) No 2.28 × 10−07 6.18 × 10−08

CHD7  a,b 4 (3/1) No 3.45 × 10−07 NA

PRKD1 3 (0/3) Yes 2.13 × 10−06 9.78 × 10−07

Missense mutations were considered significantly clustered if P < 0.05. NA, not  
applicable (unresolved cases with DNMs in known CHD genes).
aAssociated with a developmental disorder; bassociated with CHD.
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with each gene. To maximize power to detect novel causative genes, 
we focused on ‘unresolved’ S-CHD trios (i.e., probands without a 
plausible pathogenic DNM in known developmental-disorder- and 
CHD-associated genes; n = 398) and identified three genes—CDK13, 
CHD4 and PRKD1—at genome-wide significance (Table 1, Fig. 2b 
and Supplementary Table 9). All candidate DNMs in these three 
genes were experimentally validated. We found no genes at genome-
wide significance when we performed the analysis on ‘unresolved’ 
NS-CHD cases (n = 792).

We identified seven S-CHD individuals (Fig. 3a) with clustered 
missense variants, six de novo variants and one variant of unknown 
inheritance in the highly conserved serine–threonine protein kinase 
domain of cyclin-dependent kinase 13 (encoded by CDK13), which 
shows a marked depletion of missense variants in the European popu-
lation (Fig. 3b). Four probands carry an identical missense mutation 
(p.Asn842Ser). These seven S-CHD cases (six trios and one singleton) 
were characterized by septal defects (ventral septal defects, n = 2; 
atrial septal defects, n = 5), with two also presenting with pulmonary 
valve abnormalities. Each had a recognizable facial gestalt, significant 
developmental delay and slight to moderate microcephaly, and two 
had agenesis of the corpus callosum (Fig. 3a and Supplementary 
Table 10). Modeling of the kinase domain indicated that the observed 

mutations impair ATP binding, binding of the magnesium ion that 
is essential for enzymatic activity or interactions with cyclin K which 
forms a complex with CDK13 (Fig. 3c). This cyclin K–CDK13 complex  
phosphorylates RNA polymerase II and is necessary for alterna-
tive splicing of RNA14,15. Knockout mice for Cdk12—the closest  
paralogue of CDK13 and likewise expressed ubiquitously during 
development—die after implantation (embryonic day 5.5), suggest-
ing a strong developmental effect16.

We observed five S-CHD individuals with DNMs in CHD4  
(four missense variants and one in-frame deletion), which encodes 
a chromodomain-containing protein that catalyzes ATP-dependent  
chromatin remodeling as a core component of the nucleosome remod-
eling and histone deacetylase (NuRD) repressor complex17. Three 
patients manifested Tetralogy of Fallot or Fallot-like features, and the 
remaining two had an aortic coarctation and a septal defect, respec-
tively (Supplementary Fig. 2 and Supplementary Table 11). All  
had substantial early delay in neurodevelopment, two had Chiari 
malformations and three of the four males had cryptorchidism or 
ambiguous genitalia. These features suggest an overlap with CHARGE 
syndrome (OMIM 214800) caused by heterozygous loss-of-function 
mutations in the paralogous gene, CHD7, which also achieves signifi-
cance in S-CHD cases (Table 1). Haploinsufficiency of GATAD2B, 
which encodes another component of the NuRD complex, has been 
found to cause a recognizable intellectual-disability syndrome, 
although associated CHD has not been reported18. More generally, 
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Figure 2  Gene-wise enrichment of de novo mutations. (a,b) Gene-wise 
DNM enrichment for the complete S-CHD cohort (n = 518) (a) and 
‘unresolved’ S-CHD trios without a plausible pathogenic DNM in known 
developmental-disorder- and CHD-associated genes (n = 398) (b).  
The probability of enrichment was computed given a Poisson distribution 
with the rate given by the gene-specific mutation rate multiplied by the 
number of chromosomes considered. This was performed independently 
for de novo PTVs and de novo missense variants. The de novo missense-
enrichment probability was further combined with the probability of 
nonrandom clustering of de novo mutations using Fisher’s method, and 
the minimum was taken between the combined and the original P value. 
The minimum probability (considering either de novo PTVs or de novo 
missense mutations) was plotted. The dashed horizontal line represents 
genome-wide significance (P < 1.31 × 10−6, Bonferroni-corrected  
P = 0.05 corrected for 2 × 19,252 protein-coding genes).
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several components of other ATP-dependent chromatin-remodeling 
complexes have been associated with dominant developmental syn-
dromes, including CHD in some patients6,7. A recent study showed 
that mice with endothelial knockdown of CHD4, which results in a 
dysfunctional NuRD complex, die of vascular rupture during mid-ges-
tation19. This finding suggests dysfunction of the NuRD complex as a 
possible mechanism for the observed human cardiac phenotype.

We identified three S-CHD individuals with de novo missense 
mutations in PRKD1, with two having identical DNMs, a mutational 
pattern suggestive of gain of function (Supplementary Fig. 3 and 
Supplementary Table 12). Two out of the three individuals were 
affected by atrioventricular septal defects, whereas the third was 
affected by pulmonic stenosis. Other features included severe develop-
mental delay and ectodermal (dry skin, teeth and nail defects) and limb 
abnormalities. A homozygous PTV in PRKD1 has recently been associ-
ated with truncus arteriosus through autozygosity mapping20. PRKD1 
encodes a serine–threonine kinase that regulates diverse cellular func-
tions, including the transcriptional response to cardiac hypertrophy21. 
Homozygous knockout of Prkd1 in mice is embryonic lethal, and  
tissue-specific knockout results in abnormal cardiac remodeling21.

The burden analyses described above clearly show enrichment 
for de novo PTVs, de novo missense variants and inherited PTVs 
within our CHD data set. We therefore hypothesized that some genes 
might be enriched for both de novo and rare inherited variants and 
that integrating both classes of variation, in trios and in singletons, 
using a previously described hierarchical Bayesian model22 (Online 
Methods) might improve power to detect novel CHD-associated 
genes. We analyzed PTVs and missense variants separately and con-
sidered candidate CHD-associated genes at strong (false discovery 
rate (FDR) < 1%), intermediate (1% < FDR < 5%) and weak (5%< FDR 
< 10%) levels of confidence (Fig. 4 and Supplementary Tables 13  
and 14). We found 16 genes at the strongest level of confidence;  
12 were known developmental-disorder-associated genes, one was 
associated with CHD but not with developmental disorders (MYH6), 
and three (CHD4, CDK13 and DIAPH3) were previously unknown 
candidate genes. Most high-confidence genes showed enrichment for 
either DNMs or inherited variants; only two genes, NOTCH1 and 
KAT6A, showed appreciable enrichment for both. NOTCH1 was nota-
ble as being the only high-confidence gene for which the evidence 
from inherited PTVs exceeded that from DNMs (Fig. 4b). Owing to 
the likely concentration of false discovery signals in novel gene associ-
ations, this analysis alone is probably insufficient to conclusively assert 
novel CHD associations. Additional functional evidence can priori-
tize genes for future follow-up studies (Supplementary Table 15).  
We evaluated the over-representation of particular gene functions 
and pathways among the top 374 genes with an FDR < 50% (Online 
Methods) and observed a significant (FDR < 10%) over-representa-
tion of genes associated with Gene Ontology terms relating to chro-
matin modification, protein phosphorylation and neural tube and 
cardiac development (Supplementary Table 16). Over-represented 
pathways included NOTCH1, insulin-like growth factor-1, histone  

deacetylase class II, receptor tyrosine kinase ErbB and nuclear  
factor-κB signaling (Supplementary Table 17). In addition, the  
374 top-ranking genes showed considerable functional coherence, 
with many genes forming a single large interconnected subnetwork of 
high-confidence (STRING score > 0.9) protein–protein interactions 
(Supplementary Fig. 4), the degree of interconnection of which was 
significantly higher than expected by chance (P = 5.84 × 10−3). Key 
hubs in this subnetwork were NOTCH1, SOS1, EP300 and SMAD4.

Several mechanisms have been proposed to explain the low sib-
ling recurrence risk of CHD, including a major role for DNMs7, 
incomplete penetrance of variants with large effect sizes and a poly-
genic and/or multifactorial etiology23. Our analyses (summarized 
in Supplementary Table 18) show that the relative contributions of 
DNMs and incomplete penetrance differ markedly between NS-CHD 
and S-CHD, with a major role for de novo mutations in the latter and 
inherited high-risk variants in the former. By focusing on unresolved 
S-CHD cases, we discovered three S-CHD disorders caused by muta-
tions in genes not previously associated with S-CHD (PRKD1, CHD4 
and CDK13). CHD is often not fully penetrant in S-CHD disorders 
(as with KMT2D and NSD1, for example)24,25, and as all patients in 
our study were selected for CHD, further unbiased studies are neces-
sary to quantify the penetrance of CHD in these three syndromes. 
These three genes increase the percentage of S-CHD probands with a 
putatively pathogenic DNM from 23% to 26% of patients, effectively 
increasing the diagnostic yield of this class of variation by 13%.

Current sample sizes provide limited statistical power to detect 
novel S-CHD disorders, and given the observed burden of de novo 
PTVs in S-CHD, we estimate that data sets at least 20-fold larger 
will be needed to discover most dominant CHD-associated genes 
(Supplementary Fig. 5). This challenge is likely to be even greater for 
identifying most genes harboring incompletely penetrant variation 
in NS-CHD26. Our data motivate different study-design strategies 
for S-CHD (trios) and NS-CHD (case–control), but international 
collaboration and data sharing will be essential to achieve a deeper 
understanding of the genetic architecture of CHD.

URLs. Deciphering Developmental Disorders study, http://www.
ddduk.org/; DECIPHER, https://decipher.sanger.ac.uk/; NHS 
Blood and Transplant, http://www.nhsbt.nhs.uk; National Institute 
for Health Research (NIHR) BioResource, http://bioresource.nihr.
ac.uk; NIHR Cambridge Biomedical Research Centre, http://www.
cambridge-brc.org.uk; European Genome–phenome Archive (EGA), 
https://www.ebi.ac.uk/ega/.

Methods
Methods and any associated references are available in the online 
version of the paper.
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line, where equal signal is obtained from de novo variation and  
inherited variation. Genes at an FDR < 10% are labeled; confidence 
thresholds are indicated by color.
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Accession codes. EGA: Data have been deposited under accession 
numbers EGAS00001000808, EGAS00001000368, EGAS00001000762, 
EGAS00001000544, EGAS00001000071 and EGAS00001000187.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Cohort composition and recruitment. The CHD families analyzed in this 
study were recruited from multiple pediatric cardiology and clinical genetics 
centers from the United Kingdom, United States, Canada, Germany, Belgium 
and Saudi Arabia, and includes families of both European and non-European 
ancestry (Supplementary Table 1). In addition to single-center recruitment, 
four multi-center cohorts were included: the DDD study, UK10K project, 
Competence Network for Congenital Heart Defects (Germany) and published 
data7 from the Pediatric Cardiac Genetics Consortium (PCGC). The breakdown 
by center and study is shown in Supplementary Table 2 and by phenotype in 
Supplementary Table 3. Our study focused on severely affected NS-CHD cases 
needing surgical intervention and S-CHD cases with clinically relevant struc-
tural heart defects. Patients were assigned to the S-CHD cohort if they showed 
a distinct facial gestalt or had at least one reported extra-cardiac malformation. 
Local institutional review boards approved all studies, and written consent was 
obtained from patients or parents depending on the local requirements. Within 
the participating institution, the phenotype status in cases was evaluated by 
clinical examination, two-dimensional echocardiography, magnetic resonance 
imaging and cardiac catheterization, surgical or physician reports and sample 
description provided by deposited study files. We excluded mild cardiovascular 
lesions, such as an existing preterm patent ductus arteriosus and patent foramen 
ovale, as well as isolated extra-cardiac cardiovascular lesions, such as arterial 
tortuosity from the analysis. Cardiac and extra-cardiac phenotypes were trans-
lated to the current European Paediatric Cardiac Code (EPCC) (version April 
2015)28 and Human Phenotype Ontology (HPO) terms29 (Supplementary 
Table 3). In total, 1,365 trios, 68 probands from 32 multisibling families and 
458 singleton probands were sequenced and analyzed.

We also assembled a collection of 12,031 control exomes of European ances-
try comprised of two data sets using similar exome-capturing platforms and 
applying an identical processing pipeline to that used for the CHD cohorts. 
The first data set incorporates 7,301 exomes (3,654 females, 3,647 males) of 
unaffected parents from probands that do not have CHD in the Deciphering 
Developmental Disorders cohort6. The second control data set consisted of 
4,730 exomes (2,464 females, 2,266 males) of seemingly healthy blood donors 
as part of the INTERVAL study30.

The study was approved by the UK Research Ethics Committee 
(10/H0305/83, granted by the Cambridge South Research Ethics Committee 
and GEN/284/12, granted by the Republic of Ireland Research Ethics 
Committee), the Ethics Committee Charité Berlin, Germany (EA2/131/10), 
and the East Midland Research Ethics Committee (6721).

Exome sequencing. Genomic DNA (approximately 1 µg) was fragmented 
to an average size of 150 bp and subjected to DNA library creation using 
established Illumina paired-end protocols. Adaptor-ligated libraries were 
amplified and indexed via PCR. A portion of each library was used to create 
an equimolar pool comprising eight indexed libraries. Each pool was hybrid-
ized to SureSelect RNA baits (Agilent Human All-Exon V3 Plus with custom 
ELID C0338371 and Agilent Human All-Exon V5 Plus with custom ELID 
C0338371), and sequence targets were captured and amplified in accordance 
with the manufacturer’s recommendations. Enriched libraries were subjected 
to 75-base paired-end sequencing (Illumina HiSeq) following the manufac-
turer’s instructions.

SNP and indel validation. We validated all de novo variant calls reported in 
CDK13, CHD4 and PRKD1 using capillary sequencing. Primers were designed 
to amplify 400–600-bp products centered on the site of interest. Primer3 design 
settings were adjusted as follows, using a human mispriming library: primer 
length, 18 ± 3 bp, GC clamp = 1, Tm 60 ± 2. Genomic DNA from all trio 
members, amplified by whole-genome amplification (WGA) using illustra 
Genomiphi HY or V2 Amplification Kits (GE Healthcare), was used as template 
DNA in the site-specific PCR reactions. PCR reactions were carried out using 
Thermo-Start Taq DNA Polymerase (Thermo Scientific), following the manu-
facturer’s protocol. The PCR products were assessed by agarose gel electro-
phoresis and submitted for sequencing to the Faculty Small Sequencing Projects 
(Wellcome Trust Sanger Institute core facility). Capillary sequence traces from 
all trio members were aligned and viewed using an in-house-designed web-
based tool and scored for the presence or absence of the variant.

CHD gene set curation. We curated a list of nonsyndromic and syndromic 
genes robustly implicated in CHD, including their inheritance mode and 
mechanism (for example, loss-of-function, activating). By applying consist-
ent stringent criteria31 (Supplementary Table 19), we identified a total of 185 
genes that have been implicated in CHD disease pathogenesis in humans up 
to November 2015 (Supplementary Table 20). The majority of these genes 
are implicated in syndromic CHD (n = 152); only 31 are implicated in non-
syndromic CHD. Two genes, NOTCH1 and FLNA, have been assigned to both 
the syndromic and nonsyndromic disease category. 103 genes are inherited 
in a monoallelic (dominant) fashion, whereas 70 show a biallelic (recessive) 
inheritance pattern. The strongest evidence from the literature is available for 
tier 1 genes (n = 118) with 67 genes in the tier 2 category.

Alignment and BAM improvement. Mapping of short-read sequences for 
each sequencing lanelet was carried out using the Burrows-Wheeler Aligner 
(BWA; version 0.59)32 backtrack algorithm with the GRCh37 1000 Genomes 
Project phase 2 reference (also known as hs37d5). PCR- and optically dupli-
cated reads were marked using Picard (version 1.98) MarkDuplicates. Lanelets 
were spatially filtered to account for bubble artifacts and quality controlled 
(passing thresholds on the percentage of reads mapped; the percentage of 
duplicate reads marked; various statistics measuring indel distribution against 
read cycle; and an insert size overlap percentage). Lanelets were then merged 
into BAM files corresponding to the sample’s libraries, and duplicates were 
marked again with Picard, after which the libraries were merged into BAM files 
for each sample. Finally, sample-level BAM improvement was carried out using 
the Genome Analysis Toolkit (GATK; version 3.1.1)33 and SAMtools (version 
0.1.19)34. This consisted of a realignment of reads around known and discov-
ered indels followed by base quality score recalibration (BQSR), with both steps 
performed using GATK, and, lastly, SAMtools calmd was applied and indexes 
were created. The GATK3 program was made available through the generosity 
of Medical and Population Genetics program at the Broad Institute.

Variant calling. Known indels for realignment were taken from the Mills 
Devine and 1000 Genomes Project Gold set and the 1000 Genomes Project 
phase low-coverage set, both part of the GATK resource bundle, version 
2.2. Known variants for BQSR were taken from dbSNP 137, also part of the 
GATK resource bundle. Finally, SNVs and indels were called using the GATK 
HaplotypeCaller (version 3.2.2); this was run in multisample calling mode 
using the complete data set. GATK variant quality score recalibration (VQSR) 
was then computed on the whole data set and applied to the individual-sample  
variant calling format (VCF) files. DeNovoGear version 0.2 (ref. 35) was 
used to detect de novo mutations (SNVs and indels) from trio exome data 
(BAM files) (Supplementary Tables 21–23). Variant calls were annotated 
using the Variant Effect Predictor (VEP) pipeline (Supplementary Note and 
Supplementary Table 24). Quality control and filtering at the variant and 
sample levels was performed at various stages of the analysis to account for 
technical artifacts (Supplementary Note and Supplementary Figs. 6 and 7).  
Copy number variants (CNVs) were called using an in-house tool called 
Convex (Supplementary Note and Supplementary Tables 25 and 26).

De novo burden analysis. We computed the excess of de novo and rare inher-
ited variants in different sets of autosomal genes: tier 1 CHD-associated genes 
with a monoallelic inheritance mode (Supplementary Table 20), develop-
mental-disorder-associated (DD) genes with a monoallelic inheritance mode 
excluding CHD-associated genes and all protein-coding genes excluding 
monoallelic CHD and DD genes.

We compared the excess of de novo variation observed in the S-CHD and 
NS-CHD cohorts to a null mutation model as described in Samocha et al.9. 
The expected number of DNMs of consequence class j in a given gene set g 
was modeled as 

DNM Poiss( )exp, ,j g j g∼ l ,  

l mj g i j
g

n, ,= ∑ 2
 

with µi,j being the gene-wise mutation rate for a given gene i and conse-
quence class j in the gene set, and n being the number of samples in the cohort  
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(with 2n being the number of observed chromosomes and nS-CHD = 518,  
nNS-CHD = 847). We then computed the probability of observing a DNM count 
equal or more extreme compared to the observed count in the S-CHD and 
NS-CHD cohorts through the inverse cumulative density function of this null 
model. The excess E of DNMs of consequence class j in a given gene set g was 
then computed as 

E j
j g

j g
DNM,

obs,

exp,

DNM

DNM
= ,

,  

with DNMobs,j,g being the observed number of de novo mutations of con-
sequence class j in gene set g in n trios of either the S-CHD or NS-CHD 
cohort. This number was obtained after the filtering described above, with an 
additional filter excluding lower-quality calls with a DeNovoGear posterior 
probability lower than 0.9.

Rare inherited variant burden analysis. To compute the excess of inher-
ited rare variants in the aforementioned gene sets, we compared the observed 
number of rare variants found in the CHD cases with the observed number of 
rare variants found in our population-matched control cohort. The expected 
number of variants of consequence class j in a gene set g was modeled as 

INH Poiss( )exp, ,j g j g∼ l ,  

li g
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with ci,j being the count of rare variants found in the European control popu-
lation (following the same processing pipeline and filtering protocols as the 
CHD cohorts), ncontrols being the number of controls (12,031) and ncases being 
the number of trios of European ancestry for the S-CHD and NS-CHD cohorts 
(nS-CHD = 471, nNS-CHD = 663). We then computed the probability of observing 
a count of rare inherited variants equal or more extreme as that observed in 
our CHD cohorts through the inverse cumulative density function of this null 
model. In addition to the aforementioned variant filters, for trios we added the 
prerequisite that variants in CHD cases needed to be called in the child and 
at least one of the parents. Also, if after filtering multiple variants were found 
in a single proband for a given gene, only the variant of the consequence class 
with the highest impact was counted (PTV > missense > silent). The excess of 
rare inherited variants was then computed as 
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To exclude the possibility that the observed differences in burden of de novo 
and inherited variants between the S-CHD and NS-CHD cohorts might be 
caused by confounding variables we investigated differences between the 
two cohorts in variant calling, ancestry, and sex (Supplementary Note and 
Supplementary Figs. 8–12) but found no confounding factor that could 
explain the observed burden of variants.

De novo burden cross-disease comparison. We compared the genome-wide 
excess of de novo mutations found in our S-CHD and NS-CHD cohorts to 
other published studies, such as Iossifov et al.10 for autism spectrum disorder 
(and unaffected siblings here denoted as controls) and non-CHD cases in the 
Deciphering Developmental Disorders Study6,36. This was computed in the 
same way as described in the de novo burden analysis (but across all genes in 
the genome, not just autosomal genes). Owing to differences in annotation 
and exome-capture platforms compared to the published data sets, we used 
the mutation rate estimates provided in the Samocha et al.9 study. This is 
in contrast to the moderately more conservative (i.e., higher) mutation rate 
estimates used in the burden analysis, de novo enrichment analysis and the 
integrated analysis of this study.

De novo enrichment analysis. Gene-specific mutation rates for different func-
tional classes of SNVs (missense, silent, nonsense, canonical splice site, loss 
of stop codon) were computed using the methodology proposed by Samocha 
et al.9 and as described in Fitzgerald et al.6. We computed the mutation rates 

by selecting the longest transcript in the union of transcripts overlapping the 
observed DNMs in that gene. This results in conservative estimates of enrich-
ment where the (unknown) functionally active transcript can be considerably 
shorter than the longest overlapping transcript in Ensembl gene build 76.

We evaluated the gene-specific enrichment of PTV and missense DNMs in 
the S-CHD cohort by computing its statistical significance under a null hypoth-
esis of the expected number of mutations given the gene-specific mutation rate 
and the number of considered chromosomes9. For every protein-coding gene 
we modeled the expected number of DNMs of consequence class j as 

DNM Poiss( )exp,j j∼ l  

l mj jc=  
with µj being the gene- and consequence-specific mutation rate and c being 
the number of considered chromosomes. For autosomal genes, c = 2n with  
n being the total number of S-CHD trios. For genes on the X chromosome  
c = 2nf + nm, and for genes on the Y chromosome c = nm, with nf and nm 
being the number of trios with female and male probands, respectively. We 
computed the probability under this null model of finding an equal or more 
extreme number of de novo mutations of consequence class j, compared to the 
observed number in the S-CHD cohort.

We analyzed de novo missense mutations to detect clustering of mutations 
within genes, indicating potential gain-of-function mechanisms. We did 
this by selecting the longest transcript available that contained all the source  
de novo variants and calculating simulated dispersions of the observed number 
of mutations within the gene. The probability of simulating a mutation at a 
specific codon was weighed by the trinucleotide sequence context6. For each 
gene, we simulated the locations of the observed number of de novo mutations 
1 million times. We then computed, for the observed mutations and the simu-
lations, the geometric mean of the distance between each pair of mutations as a 
metric of clustering. This allowed us to estimate the probability of the observed 
degree of clustering given the null model of random mutations.

Fisher’s method was used to combine the significance testing of mutation 
enrichment and mutation clustering. This combined P value was generated 
only for significance testing of all missense mutations and was not used for 
significance testing for de novo PTVs. The assumption behind this is that 
genes enriched for PTVs will be operating predominantly by a mechanism 
of haploinsufficiency, which does not predict significant clustering of muta-
tions, whereas genes enriched for other classes of functional mutations, pre-
dominantly missense mutations, could be operating by dominant negative 
or activating mechanisms, which are likely to be clustered at particular sites 
within the coding sequence of the gene. We then declared a gene as signifi-
cantly enriched for DNMs if the minimum P value between the PTV P value 
and the combined missense P value was below the genome-wide significance 
threshold. Given the large number of tests, we assumed genome-wide signifi-
cance when the probability was lower than 1.31 × 10−6, which represents a 
Bonferroni-corrected P value of 0.05 adjusted for 2 × 19,252 tests (consequence 
classes tested multiplied by the number of protein coding genes).

We performed the de novo enrichment analysis three times. First, we per-
formed the analysis on the complete S-CHD cohort (as this cohort was shown 
to have a high burden of de novo PTVs in our previous analysis) to demonstrate 
the power of the approach by detecting known syndromic CHD-associated 
genes (Supplementary Table 8). Second, we performed the analysis on the 
NS-CHD cohort, not detecting any genome-wide significant hits (in accord-
ance with the lack of genome-wide burden of DNMs in nonsyndromic CHD). 
Third, we performed the enrichment analysis on a subset of S-CHD probands 
that did not carry a de novo mutation in any known monoallelic developmen-
tal-disorder-associated gene (unresolved S-CHD, n = 398). By focusing on 
these ‘unresolved’ cases with no likely diagnosis in known genes, we enrich for 
cases with novel causes of S-CHD, potentially increasing our power to discover 
novel genes (Supplementary Table 9).

Integrated de novo and inherited variation analysis. To study genes that had 
a simultaneous enrichment of de novo mutations and rare inherited variants, 
we performed an integrated analysis using a hierarchical Bayesian model as 
described and implemented in the TADA tool by He et al.22. Hyperparameters 
were set according to TADA’s guidelines (Supplementary Note,  
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Supplementary Table 27 and Supplementary Fig. 13). The TADA tool ulti-
mately outputs Bayes factors (BFs) for each source (de novo, case–control) and 
consequence class. These BFs represent the OR of a given gene being a CHD 
risk gene versus the null hypothesis of it not conferring a risk to CHD. BFs 
can be simply combined to generate a global score by multiplying them for 
each gene. On the basis of the observation that known CHD-associated genes 
showed signal only for PTVs or missense variants (very few genes showed 
moderate signal in both), we combined BFs (for de novo and case–control 
signal) only within each consequence class. We then computed Bayesian 
FDR estimates as described by He et al.22, then categorized candidate genes 
as having strong (FDR < 1%), intermediate (1%< FDR < 5%) and weak (5%< 
FDR < 10%) levels of confidence (Supplementary Tables 13 and 14 and 
Supplementary Table 28). We annotated these genes with mouse embryonic 
cardiac expression, presence of a cardiac phenotype in knockout models, the 
observed cardiac phenotypes in our cohort, known associated developmental 
disorders, known associated cardiac phenotypes and the described inheritance 
mode in the literature (Supplementary Table 15).

Function, pathway and network analysis. In order to determine whether any 
gene functions or pathways were over-represented in the top-ranking genes 
from the TADA analysis, we used InnateDB37 (November 2015). InnateDB’s 
over-representation analysis performs a hypergeometric distribution test to 
find gene ontology terms and pathways (from KEGG, Reactome NetPath, 
INOH, BioCarta and PID) that are represented more than would be expected 
by chance given a set of genes. As an input set we used all genes with an FDR 
< 50% (n = 374 or the top 2% quantile of protein-coding genes) from the 
de novo and inherited variant integrated TADA analysis. Owing to the large 
number of terms and pathways tested, we considered a term or pathway to 
be over-represented if the Benjamini–Hochberg-corrected FDR was less than 
10% (Supplementary Tables 16 and 17).

Additionally, we looked for an over-representation of protein–protein inter-
actions (PPIs) within this set of top-ranking genes using the STRING (version 
10) PPI database38. To avoid potentially spurious low-confidence interactions, 
we restricted our analysis to interactions with a confidence score of 0.9 or 
higher. STRING allows the possibility to compute the probability of finding 
an equal or higher number of PPIs given a random set of genes. In our case, 

the top-ranking genes showed a significant enrichment of within-set high 
confidence interactions (P = 5.84 × 10−3) (Supplementary Fig. 4).

CDK13 homology modeling. To evaluate the impact of the identified DNM 
on the kinase domain of CDK13, we used the available experimentally deter-
mined crystal structure of CDK12, which shares over 91% amino acid sequence 
identity. We built the model of human CDK13 based on a structure of human 
CDK12 kinase domain (residues 714–1,063) in complex with cyclin-K (resi-
dues 1–267) with bound Mg-ADP and AlF3 at 2.2 Å resolution (PDB 4NST)16 
using the SWISSMODEL server39 (Supplementary Fig. 14).
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