

Clinical and analytical interferences with HbA1c assays 10-05-2022

Critically Appraised Topic Alexander Ockerman Supervisor: Christine Van Laer

Laboratoriumgeneeskunde - UZ Leuven

Diabetes is a major global health threat

Laboratoriumgeneeskunde - UZ Leuven

- Hundreds of millions affected worldwide and rising > 400 million, projected >640 million by 2040
- Chronic long term complications -> macro- and microvascular: myocardial infarction, stroke, impotence, nephropathy, retinopathy, neuropathy, amputations, infections,..
- Enormous impact on morbidity, mortality and healthcare costs (estimated 10% of healthcare costs)

Importance of correct HbA1c measurements and interpretation in managment and diagnosis!

What is *HbA1C?*

Chauhan, N. Laboratory Diagnosis of HbA1c: A Review. *Journal of Nanomedicine Research* **5**, (2017).

Terminal N-Valine on the beta chain + glucose -> Unstable Schiff base -> Stable Amadori Product

Standard interpretation norm*IFCC (mmol/mol)NGSP (%)Normal reference range20-424-6Decision limits Monitoring therapyTarget treatment537Limit change therapy648DiagnosisLow risk<40<5.8Increasing risk future40-465.8-6.4Diabetes>46> 6.4					
Normal reference range20-424-6Decision limitsMonitoring therapyTarget treatment537Limit change therapy648DiagnosisLow risk<40	Standard interpretation no	IFCC (mmol/mol)	NGSP (%)		
Decision limitsMonitoring therapyTarget treatment537Limit change therapy648DiagnosisLow risk<40	Normal reference range		20-42	4-6	
Limit change therapy648DiagnosisLow risk<40	Decision limits Monitoring therapy	Target treatment	53	7	
DiagnosisLow risk<40<5.8Increasing risk future diabetes40-465.8-6.4Diabetes>46>6.4		Limit change therapy	64	8	
Increasing risk future40-465.8-6.4diabetes>46>6.4	Diagnosis	Low risk	< 40	< 5.8	
Diabetes >46 >6.4		Increasing risk future diabetes	40-46	5.8-6.4	
		Diabetes	>46	>6.4	

Weykamp, C. HbA1c: A review of analytical and clinical aspects. *Annals of Laboratory Medicine* **33**, 393–400 (2013).

Standardization of HbA1c measurements

NGSP/DCCT

- %
- Directly linked to clinical outcomes

IFCC

- mmol/mol
- Traceability to a higher order reference method

Master equation for conversion: NGSP = [0.09148 * IFCC] + 2.152 IFCC = [10.93 * NGSP] - 23.50

Different methods of HbA1c measurements

Laboratoriumgeneeskunde - UZ Leuven

Weykamp, C. HbA1c: A review of analytical and clinical aspects. *Annals of Laboratory Medicine* **33**, 393–400 (2013).

Separation methods

• HPLC

difference in polarity to separate the different fractions over a column ->ratio of the HbA1c peak area to the total hemoglobin peak areas

Capillary electrophoresis

difference in charges to separate the Hb fractions using a high-voltage electrical field and electroosmotic flow

• Boronate affinity chromatography

column packed with particles coated with boronic acid -> glycated Hb affinity to cis-diol binding measures total glycated Hb over non-glycated Hb least interference from variant Hb

Tosoh G8 HPLC

ID: 000 CAL(IN)	1 - 03 = 12.4	025X -	19.0939
TP -	620		
NAME FP A1A A1B F LA1C SA1C A0	% 0.00 0.54 0.66 0.56 1.34 5.26 93.19 TOTAL	T1ME 0.00 0.25 0.29 0.36 0.47 0.57 0.89 AREA	AREA 0.00 5.00 6.16 5.28 12.46 39.91 869.01 937.83
IFCC	9	34 m	mol/mol
ны	10	5.	26%
HbA1	6.46 %	HbF	0.56 %
1.0			

Sysmex Academy

Laboratoriumgeneeskunde - UZ Leuven

Alere Afinion Boronate Affinity

Affinity Binding of Glycated Protein

Laboratoriumgeneeskunde - UZ Leuven

https://www.trinitybiotech.com/haemoglobins/boronateaffinity-chromatography/

https://www.globalpointofcare.abbott/en/productdetails/afinion-hba1c.html

Chemical methods

• Immuno-assays

antibodies recognize the structure of the N-terminal glycosylated valine on the **B**-chain of the Hb

turbidity of the resulting immunocomplexes is measured photometrically using a turbidimeter or nephelometer

• Enzymatic assays

enzyme that specifically cleaves the N-terminal valine this protease cleaves the beta-chain to liberate peptides -> react with fructosyl peptide oxidase, and the resulting hydrogen peroxide is used to quantify HbA1c

Alternative markers of longterm glucose control

Fructosamine and Glycated albumin (GA)

<u>Fructosamine</u> =All ketoamine linkages that result from glycation of serum proteins Includes glycated albumin, lipoproteins and glycated globulins

<u>Glycated albumin (GA)</u> = serum albumin that undergoes glycation

Reflects glycemic control of a short to intermediate time frame (2 - 3 weeks) Rate of glycation is 9- to 10-fold higher than in hemoglobin

• Estimated HbA1c (eA1c)

An approximate HbA1c level based on the average CGM-measured glucose levels is calculated Discrepancies with measured HbA1c may signal analytical/clinical interferences

Analytical interferences

Analytical Interferences										
Method	Manufacturer/ Analyzer	HbAC	HbAS	HbAE	HbAD	HbF	CarbHb			
lon-exchange HPLC	Tosoh G8 Bio-Rad Variant II Menarini ADAMS A1c	No	No	No*	No	No <30%	No			
Boronate Affinity	Alere Afinion Trinity Hb9210	No	No	No	No	No <15%	No			
Immuno-assays	Roche Cobas c513	No	No	No	No	No<10-15%	-			
lmmuno-assays	Siemens DCA 2000	No	Yes↑	Yes↑	No	No<10%	No			
Enzymatic-assays	Abbot Architect c Diazyme Direct enzymatic	No	No	No	No	-	-			
Electrophoresis	Sebia Capillarys 2	No	No	No	No	No<15%	No			

Laboratoriumgeneeskunde - UZ Leuven

Based on NGSP.org

Hemoglobin variants

- Most common Hb variants worldwide : HbS > HbE > HbC > HbD
- Single amino acid substitution in beta chain of HbA -> change in chemical properties
- Change in ionic charge of the Hb molecule -> possible interferences with <u>ion exchange HPLC</u>
- HbAE remains difficult for HPLC methods with falsely lowering results, depends on software version used, presumably no problems with Tosoh G8 as of 5.24 and 5.28
- Generally no interference for <u>Boronate Affinity</u>: separates total glycated Hb from nonglycated hemoglobin, regardless of the Hb species
- HbA1c can be used in <u>heterozygotes</u> as RBC lifespan is normal
- Can't be used in <u>homozygotes</u> (HbEE, HbSS, HbSC) as RBC lifespan is reduced

Laboratoriumgeneeskunde - UZ Leuven

HPLC advantage vs immuno-assay

- HPLC assays allow the detection of Hemoglobin variants through visual inspection of the chromatogram
- Especially important in patient groups where Hb variant prevalance is high (increasing globalization)
- Immuno-assays: you do not know if value is impacted by variant/HbF: black box

Elevated fetal hemoglobin (HbF)

- Most of the current ion-exchange HPLC methods separate normal levels of HbF into a separate peak
- In the past HbF fraction co-eluted with sA1c fraction and caused falsely low value
- Most methods are impacted when HbF levels are too high, generally above 15-30% as seen in Hereditary persistence of fetal hemoglobin (HPFH), very young patients or patients treated with hydroxyurea

HbF

Grafiek data

	%	% Time (in minuten) Area						
A1A	18.91	0.24	75.51					
F	22.61	0.42	320.19					
SA1C	5.57	0.57	15.70					
A0	74.99	0.85	299.36					
H-V1	46.75	1.14	662.13					
H-V3	0.61	0.66	8.65					
P01	2.25	1.04	31.89					
P02	0.20	1.34	2.80					

Total area

Toestel vlag

HBE suspected

Tekst

HbF > 22% / Unknown Peak / Peak missing / HBE Suspected /

Laboratoriumgeneeskunde - UZ Leuven

Carbamylated hemoglobin (carbHb)

- Occurs in CKD through uremia urea dissociates into cyanate ions
- Non-enzymatic condensation of cyanate with the N-terminal valine of hemoglobin
- In older separation techniques gave rise to falsely high HbA1c
- Newer HPLC analyzers separate carbHb better and see no interference

Lipemia and icteria

- Severe hypertriglyceridemia (>1,750 mg/dL) and severe hyperbilirubinemia (>20 mg/dL) may falsely increase HbA1c values with immuno-assays
- Falsely low HbA1c concentrations on Roche c501 immune assay with triglycerides >1300mg/dL
- Separation methods unaffected

Clinical interferences

		Clinical Inte	rferences			
	Iron deficiency	Shortened Erythrocyte Survival	Increased Erythrocyte Survival	Chronic Kidney Disease	Age	Liver Disease
Influence on HbA1c	Increase	Decrease	Increase	Variable	Increase	Decrease

Increased RBC turnover

- Any clinical situation that enriches the red blood cell pool with younger erythrocytes
- Hemolytic anemia, acute blood loss, recent transfusion, hypersplenism
- Will lower HbA1c for any given level of blood sugar, regardless of method
- Glycated albumin or fructosamine should be used in these patients or wait till normalization/treated (if possible)

Decreased RBC turnover

Technical correct measurement but no true reflection of glycemic control!!

- Splenectomy or hyposplenism
- Increases mean age of RBC's longer exposition to plasma glucose
- Higher HbA1c for any given level of blood sugar, regardless of method

Iron Deficiency Anemia (IDA)

- Associated with higher HbA1c and Fructosamine levels
- Son et al. higher mean absolute HbA1c of 0,3% can be important in diagnosis
- Iron therapy lowers HbA1c levels in these patients importance of substitution
- In late pregnancy HbA1c is often increased due to IDA
- Suggested mechanism through malondialdehyde enhances Hb glycation rate

Chronic Kidney Disease (CKD)

- Renal disease develops in many diabetic patients diabetic nephropathy
- Value of HbA1c in CKD remains controversial
- Difficult to evaluate the interplay of different factors: carbHb, renal anemia, erythropoietin intake, dialysis,..
- Recent studies propose use of Glycated Albumin better correlation with clinical outcomes and mean plasma glucose

Liver disease

- Chronic liver disease may cause false low HbA1c especially in decompensated cirrhosis
- Lower HbA1c possible even in absence of overt cirrhosis
- Possible mechanisms are macrocytic/hemolytic anemia hypersplenism
- In known patients, HbA1c only to be used in context of full liver set and RBC parameters
- Further studies necessary to clarify exact mechanisms

Age and race

- Some studies suggest increase of 0,1% per decade increase in age
- Possibly higher HbA1c in African Americans and Hispanic populations (0,1 tot 0,4%)
- Clinical impact is currently under discussion

Other factors

- High Vitamine C & E intake >1g/day decreases HbA1c in non-diabetic subjects through glycation inhibition? Relevance unclear
- Lead poisoning, chronic alcohol intake (acetaldehyde-HbA1c compound), salicylates, opioids have been reported to falsely increase HbA1c - mechanisms unclear

Can reticulocytes help interpret HbA1c values and should they routinely be determined?

Currently only 2,9% of all HbA1c requests are accompanied by a reticulocyte count in UZ Leuven, while 14% of all HbA1c requests are accompanied by a Hb measurement

Could help clinicians pick up increased red blood cell turnover and thus be aware of falsely lowered HbA1c

Reticulocytes correlation with *HbA1c (n=1782)*

UZ LEUVEN

Hb correlation with reticulocyte count – males- females *n*= 2106 and 1893

Laboratoriumgeneeskunde - UZ Leuven

Three propositions in our lab

1. A comment on the laboratory report when reticulocytes are elevated (>2%): 'correlate with glycemic profile/estimated HbA1c'.

2. Suggest that all HbA1c measurements should be accompanied by a hemoglobin measurement. When hemoglobin levels are decreased (below 14 g/dL in males and below 12 g/dL in females), reflex order a reticulocyte count. Inform the clinician that they should also order a reticulocyte count when there is clinical suspicion of increased red blood cell turnover (including other hemolysis parameters as haptoglobin, bilirubin, LDH).

3. For HbA1c values lower than 4%, reflex order a reticulocyte count.

												UZ
Grafiek data	1											LEU
	%		Time (in minuten)	Area								
A1A		0.00	0.23	3.64								
A1B		0.00	0.27	2.01								
F		0.00	0.39	3.18								
LA1	C+	0.00	0.47	11.40								
SA1	C L	2.41	0.58	13.68								
A0	L	0.00	0.87	804.73								
H-V	, L	0.00										
H-V		0.00										
HbA1c	lta at l		niat hatrouwhaar a	nion stark u	niet uitvo schooodo DBC tw	perbaar o.w.v. mogelijke an	nalytische interferentie	tan). Croop controlacted no				
norm	alisati	ie hemo	niet betrouwbaar ge oalobine en reticulo	ezieri sterik vi cvtose.	ernoogae RBC (ui	rnover of jonge RBC (cir.)	vernooga aantai reticulocy	ten). Graag controlestaal ha				
Hemoo	lobine	е	Ŭ	·		9.6	a/dL	14.0 - 18.0				
Homat	acriat					0.200		0.400 0.540				
Tiellidu	Juner					0.509		0.400 - 0.540				
RBC te	lling					2.61	10**12/L	4.50 - 6.00				
MC	V					118.4	fL	76.0 - 96.0				
MC	Н					36.8	pg	27.0 - 32.0				
MC	нс					21.1	a/dl	30.0 - 35.0				
100						31.1	g/uL	50.0 - 55.0				
RD	N					15.9	%	11.7 - 14.5			\sim	
Reticul	ocytei	n tellin(g			283	10**9/L	20 - 100				
Reticul	ocytei	n telling	g			10.9	%	0.5 - 2.0	0		1	
	GI	ucos	se					89	mg/dL	55	- 100	
	H	bA1c	:				niet ui	tvoerbaar o.w.v. moo	elijke analytische inte	erferentie		

Resultaat HbA1c niet betrouwbaar gezien sterk verhoogde RBC turnover of jonge RBC (cfr. verhoogd aantal reticulocyten). Graag controlestaal na normalisatie hemoglobine en reticulocytose.

What is the analytic influence of some common hemoglobin variants with tosoh G8 in UZ Leuven?

VS

Tosoh G8 HPLC

Alere Afinion Boronate Affinity

Alere

Hemoglobin variant	n	mean abs difference % (NGSP)	95% Cl % (NGSP)	correlation coefficient	Intercept 95% Cl	Slope 95% Cl
Hb S	27	0,164	-0,240 to 0,569	0,961	-0,98 to 0,82	0,89 to 1,20
Hb C	7	-0,113	-0,490 to 0,264	0,975	-6,84 to 1,79	0,63 to 2,00
Hb D	12	-0,19	-0,067 to 0,447	0,993	-1,45 to 0,25	1 to 1,29
Hb E	21	0	-1,071 to 1,072	0,619	0,40 to 2,84	0,45 to 0,90
Hb Riccarton*	20	0,2	0,264 to 0,667	0,988	-0,47 to 1,26	0,80 to 1,09
Hb J-Baltimore	5	0,764	-1,532 to 3,060	0,184	-1,23 to 8,69	-0,56 to 1,63
Hb G-Siriraj	3	-1,063	-2,035 to -0,092	0,789	-1,48 to 2,13	0,47 to 1,11

Parameter	Excellent	Goed	Acceptabel	Slecht	Onacceptabel
Afwijking	<0.2%	0.2 - 0.29%	0.30 - 0.39%	0.40 - 0.49%	≥ 0.50%
Doelwaarde					
Reproduceerbaar-	<1.4%	1.4 – 1.99%	2.0 - 2.99%	3.0 - 3.99%	≥ 4%
heid (CV)*					
Lineariteit (r)	>0.9970	0.9950-0.9970	0.9900- 0.9949	0.9800-0.9899	<0.9800

Sciensano criteria for EKE evaluation

Laboratoriumgeneeskunde - UZ Leuven

Follow up HbA1c in common Hb variants UZ Leuven

- HbAS: Tosoh G8 for follow up
- HbAC: Tosoh G8 for follow up
- HbAD: Tosoh G8 for follow up
- HbAE: Alere Afinion, until more experience with new software version 5.28
- Hb Riccarton: Tosoh G8 when fully integrated, Alere Afinion when partially integrated
- Hb Raleigh: interference from both HPLC and Boronate Affinity-> fructosamine/GA

Always compare measurements of both methods the first time you encounter a new variant in a patient (if you have boronate affinity)!

To Do's

- 1) Add a comment to the lab rapport when reticulocytes are above 2% 'correlate with glycemic profile/estimated HbA1c'.
- 2) Discuss these findings with the endocrinology department : what is their clinical assessment when estimated A1c values from GCM show discrepancies with lab measured HbA1c and how do they feel about adding Hb or reticulocytes to their HbA1c lab request.

Thanks for your attention!

Special thanks to Christine Van Laer and Mercedeh Tajdar