Critically Appraised Topic

Transmission of nontuberculous Mycobacteria (NTM) between patients with cystic fibrosis: is there evidence for person-to-person transmission? Which techniques are available to investigate the NTM transmission?

Author: Mathieu Cauchie – 3th Microbio UCL Saint Luc

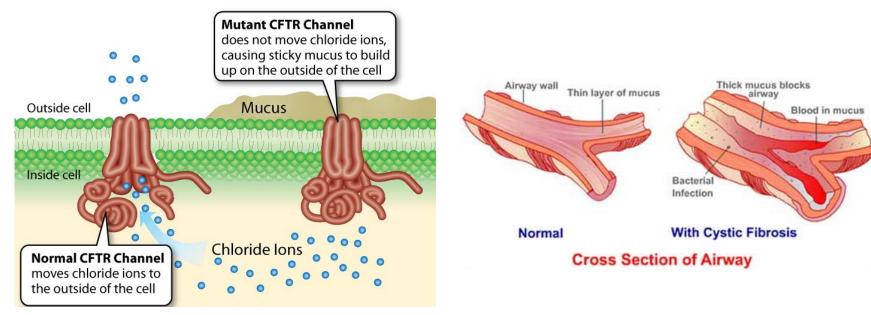
Supervisor: Dr. E. André and Prof. A. Simon

Table of contents

- Introduction
 - Cystic fibrosis (CF)
 - Taxonomy and classification of nontuberculous Mycobacteria (NTM)
 - Symptoms of NTM infection
 - o Epidemiology of NTM infection
 - Diagnosis of NTM lung infection
 - Treatment of NTM lung infection
- Question 1: What is the importance and clinical significance of NTM in CF patients?
- Question 2: How should NTM screening in CF patients be performed (preanalytical and analytical considerations)?

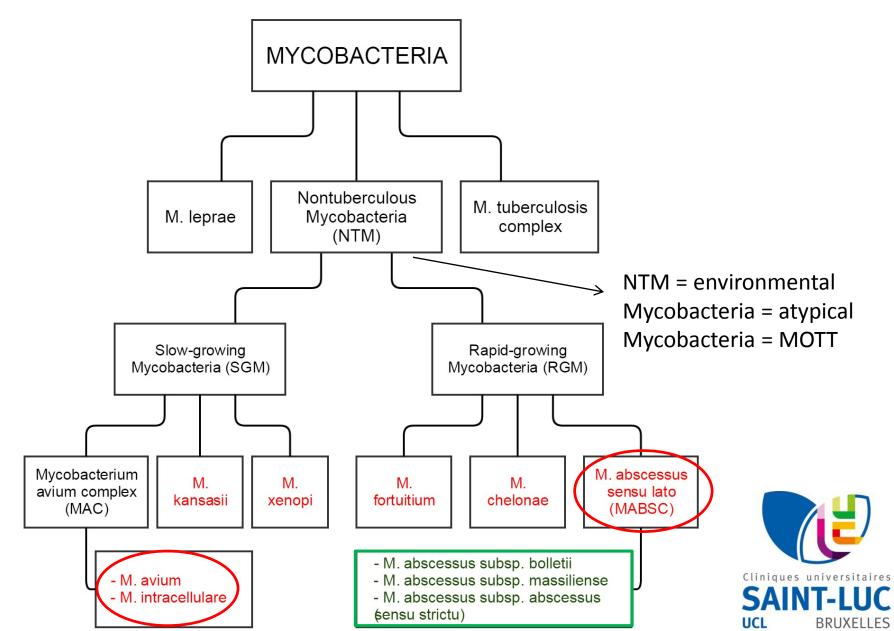
- Question 3: Is there evidence for direct or indirect person-to-person transmission in CF patients?
- Question 4: Which techniques are available to investigate the NTM transmission in CF patients?

Table of contents


- Introduction
 - Cystic fibrosis (CF)
 - Taxonomy and classification of nontuberculous Mycobacteria (NTM)
 - Symptoms of NTM infection
 - o Epidemiology of NTM infection
 - Diagnosis of NTM lung infection
 - Treatment of NTM lung infection
- Question 1: What is the importance and clinical significance of NTM in CF patients?
- Question 2: How should NTM screening in CF patients be performed (preanalytical and analytical considerations)?

- Question 3: Is there evidence for direct or indirect person-to-person transmission in CF patients?
- Question 4: Which techniques are available to investigate the NTM transmission in CF patients?

Introduction: cystic fibrosis (CF)


- Most common genetic disorder in Europe (autosomal recessive)
- Cause: mutations in CF transmembrane conductance regulator (CFTR) gene

- Symptoms: <u>respiratory</u> (cough, wheezing, ...) and <u>digestive</u> due to viscous <u>respiratory</u> and <u>gastrointestinal</u> secretions
- Prevalence: 1/8.000 1/10.000
- Life expectancy: 37 years

Introduction: taxonomy of NTM

Introduction: NTM infections

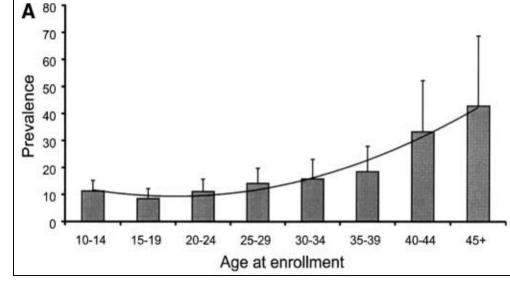
- Skin and soft tissue infection
- Disseminated disease: in immunocompromised patients
- Superficial lymphadenitis: in children (mostly cervical lymphadenitis)
- Lung infection

Introduction: NTM lung infection

Most important NTM in CF lung infection:

```
M. avium complex (MAC) >> M. abscessus complex (MABSC)

USA
```

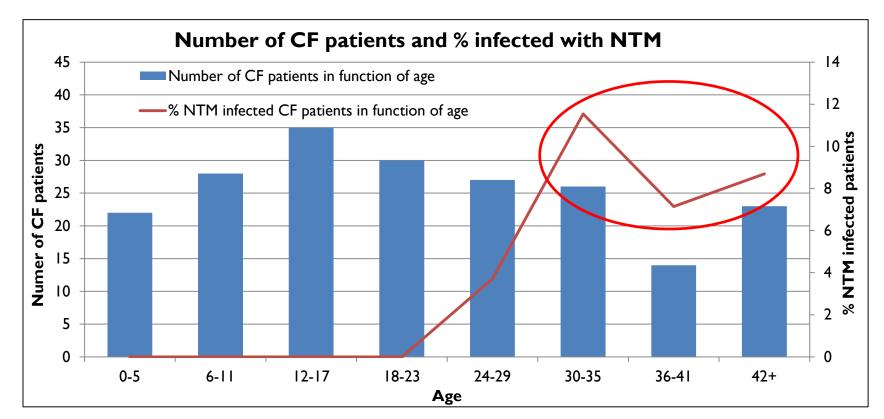


Introduction: NTM lung infection

Most important NTM in CF lung infection:

M. avium complex (MAC) << M. abscessus complex (MABSC)

Europe

- Prevalence : depending on studies = 6-15% (~ age)
 - o Improved laboratory practices
 - Improved patient survival
 - o Inhaled antibiotic usage
- Symptoms: nonspecific
 - o Blood in sputum
 - o Cough
 - o Fever
 - o Nausea
 - Night sweats
 - Weight loss


Olivier K. et al. Nontuberculous Mycobacteria. Am. J. Respir.

Crit. Care Med. 2003

Introduction: NTM lung infection

Prevalence in the CF center of the university Hospital Saint-Luc Brussels

Data CF center university Hospital Saint-Luc Brussels

Introduction: diagnosis of NTM lung infection

Etiologic Agents	Diagnostic Procedures	Optimum Specimens	Transport Issues; Optimal Transport Time
Bacteria			
Staphylococcus aureus Haemophilus influenzae Streptococcus pneumoniae Enteric bacilli Pseudomonas aeruginosa Stenotrophomonas maltophilia Achromobacter spp	Culture	Expectorated sputum; throat swabs ^a ; other respiratory samples	Sterile container, RT, 2 h; >2–24 h, 4°C
Burkholderia cepacia complex	Culture using <i>Burkholderia</i> cepacia selective agar	Throat swabs ^a , expectorated sputum; other respiratory cultures	Sterile container, RT, 2 h; >2–24 h, 4°C
Opportunistic glucose nonfermenting gram- negative rods Burkholderia gladioli Ralstonia spp Cupriavidus spp Pandorea spp	Culture	Expectorated sputum; throat swabs ^a ; other respiratory samples	Sterile container, RT, 2 h; >2–24 h, 4°C
Mycobacterium spp			
Mycobacterium abscessus Mycobacterium avium complex	Mycobacteria culture Mycobacteria culture	Expectorated sputum, bronchoscopically obtained cultures; other respiratory cultures	Sterile container, RT, 2 h; >2–24 h, 4°C
Fungi			
Aspergillus spp Scedosporium spp Trichosporon	Calcofluor -KOH or other fungal stain Fungal culture	Expectorated sputum, bronchoscopically obtained cultures; other respiratory cultures	Sterile container, RT, 2 h; >2–24 h, 4°C
Viruses			
RSV Influenza Adenovirus Rhinovirus Coronavirus Parainfluenza virus Human metapneumovirus	Rapid antigen detection DFA Viral culture methods NAAT ^b	Nasal aspirates, nasal washes, NP swabs, throat washes, throat swabs; bronchoscopically obtained specimens	Transport in viral transport media, RT or 4°C, 5 d; –70°C, >5 d

IDSA guideline: A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2013 Recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)

Introduction: diagnosis of NTM lung infection

Clinical (both required)

1. Pulmonary symptoms nodular or cavitary opacities or chest radiograph or a high-resolution computed tomography scan that shows multifocal bronchiectasis with multiple small nodules (A, I)*

and

2. Appropriate exclusion of other diagnoses (A, I)

Microbiologic

1. Positive culture results from at least two separate expectorated sputum samples (A, II). If the results from (1) are nondiagnostic, consider repeat sputum AFB smears and cultures (C, III).

or

2. Positive culture result from at least one bronchial wash or lavage (C, III)

or

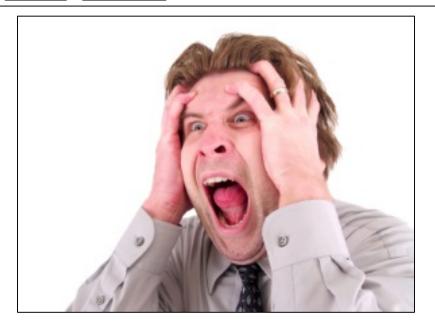
- 3. Transbronchial or other lung biopsy with mycobacterial histopathologic features (granulomatous inflammation or AFB) and positive culture for NTM or biopsy showing mycobacterial histopathologic features (granulomatous inflammation or AFB) and one or more sputum or bronchial washings that are culture positive for NTM (A, II)
- 4. Expert consultation should be obtained when NTM are recovered that are either infrequently encountered or that usually represent environmental contamination (C, III)
- 5. Patients who are suspected of having NTM lung disease but do not meet the diagnostic criteria should be followed until the diagnosis is firmly established or excluded (C, III)
- 6. Making the diagnosis of NTM lung disease does not, per se, necessitate the institution of therapy, which is a decision based on potential risks and benefits of therapy for individual patients (C, III)

An Official ATS/IDSA Statement: Diagnosis, Treatment, and Prevention of Nontuberculous Mycobacterial Diseases

Introduction: treatment of NTM lung infection

J Antimicrob Chemother 2012; **67**: 810–818 doi:10.1093/jac/dkr578 Advance Access publication 30 January 2012

Journal of Antimicrobial Chemotherapy


Mycobacterium abscessus: a new antibiotic nightmare

Rachid Nessar¹†, Emmanuelle Cambau²†, Jean Marc Reyrat¹‡, Alan Murray³,⁴† and Brigitte Gicquel³*†

Curr Pulmonol Rep. 2015 Sep 1;4(3):152-161. Epub 2015 Jul 12.

The Challenge of Pulmonary Nontuberculous Mycobacterial Infection.

Novosad S¹, Henkle E², Winthrop KL³.

Introduction: treatment of NTM lung infection

- NTM <u>intrinsically</u> resistant to classical anti-tuberculous drugs (rifampicin, isoniazide and ethambutol)
- Antibiotics used in NTM lung infections (<u>very often resistant</u>):

Antibiotic	Frequency	Route
Amikacin	7 - 10 mg/kg once daily	IV
Amikacin	250 – 500 mg twice daily	nebulized
Azithromycin	250 – 500 mg once daily	oral
Clarithromycin	500 mg twice daily	oral
Cefoxitin	4 g twice daily	IV
Imipenem	750 – 1000 mg twice daily	IV
Linezolid	300 – 600 mg once daily	oral
Tigecycline	25 – 50 mg daily	IV

Duration of treatment: several months/years!

Table of contents

- Introduction
 - Cystic fibrosis (CF)
 - Taxonomy and classification of nontuberculous Mycobacteria (NTM)
 - Symptoms of NTM infection
 - o Epidemiology of NTM infection
 - Diagnosis of NTM lung infection
 - Treatment of NTM lung infection
- Question 1: What is the importance and clinical significance of NTM in CF patients?
- Question 2: How should NTM screening in CF patients be performed (preanalytical and analytical considerations)?

- Question 3: Is there evidence for direct or indirect person-to-person transmission in CF patients?
- Question 4: Which techniques are available to investigate the NTM transmission in CF patients?

Question 1: What is the importance and clinical significance of NTM in CF patients?

- Until 30-40 years ago: "NTM = a group of <u>rather benign</u> environmental bacteria associated with <u>random colonization</u> and only <u>rarely</u> with genuine infection of the airway"
- Nowadays: "pulmonary disease caused by <u>NTM</u> may occur as a component of <u>disseminated</u> infection, but often the disease <u>only</u> affects the lungs"

Until recently, *M. abscessus* infection = contraindication for lung transplantation among CF patients

Question 1: What is the importance and clinical significance of NTM in CF patients?

Whole population

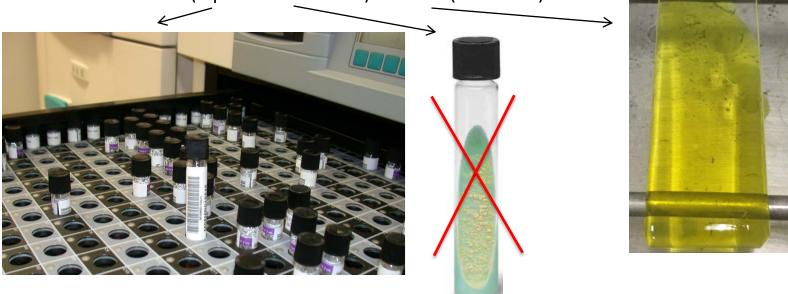
# positive NTM samples (M. avium)	progressive radiographic abnormalities	
1	2%	
2	90%	
3	98%	

Tsukamura, M. Diagnosis of disease caused by Mycobacterium avium complex. CHEST J, 1991

CF population:

Clinical Significance of a First Positive Nontuberculous Mycobacteria Culture in Cystic Fibrosis

Stacey L. Martiniano¹, Marci K. Sontag², Charles L. Daley³, Jerry A. Nick³, and Scott D. Sagel¹ 38.5% active NTM lung infections


Table of contents

- Introduction
 - Cystic fibrosis (CF)
 - Taxonomy and classification of nontuberculous Mycobacteria (NTM)
 - Symptoms of NTM infection
 - o Epidemiology of NTM infection
 - Diagnosis of NTM lung infection
 - Treatment of NTM lung infection
- Question 1: What is the importance and clinical significance of NTM in CF patients?
- Question 2: How should NTM screening in CF patients be performed (preanalytical and analytical considerations)?

- Question 3: Is there evidence for direct or indirect person-to-person transmission in CF patients?
- Question 4: Which techniques are available to investigate the NTM transmission in CF patients?

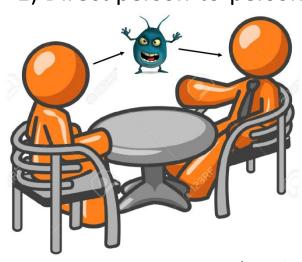
Question 2: How should NTM screening in CF patients be performed?

- Frequency of NTM screening in CF patients:
 - o Routinely: 1x/year
 - o In patients receiving NTM therapy: 1x/1-2 months
 - → Culture (liquid + solid media) + smear (auramine)

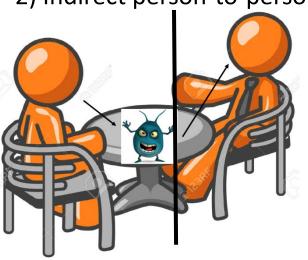
- Samples:
 - For NTM lung diagnosis: early-morning sputum specimens or BAL fluid
 - No oro-pharyngeal swabs (too little material)

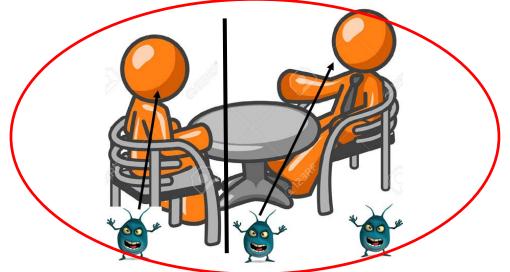
Question 2: How should NTM screening in CF patients be performed?

- Decontamination of sputum samples:
 - N-Acetyl-L-Cysteine sodium hydroxide (NALC-NaOH) method: 1st choice
 - NALC: digestant
 - NaOH: digestant + decontaminant
 - NaOH method
 - o NALC-NaOH-OxA method:
 - Cave: OxA toxic for Mycobacteria (especially M. abscessus in low concentration)
 - Chlorhexidine method
 - Pro: high NTM yield
 - Contra: chlorhexidine is incompatible with the Mycobacterial growth indicator tube (MGIT) culture
 - → Laboratory of the university Hospital Saint-Luc Brussels
 - non CF-patients: NALC-NaOH method (<u>15</u> min)
 - CF patients: NALC-NaOH method (45 min)


Table of contents

- Introduction
 - Cystic fibrosis (CF)
 - Taxonomy and classification of nontuberculous Mycobacteria (NTM)
 - Symptoms of NTM infection
 - o Epidemiology of NTM infection
 - Diagnosis of NTM lung infection
 - Treatment of NTM lung infection
- Question 1: What is the importance and clinical significance of NTM in CF patients?
- Question 2: How should NTM screening in CF patients be performed (preanalytical and analytical considerations)?


- Question 3: Is there evidence for direct or indirect person-to-person transmission in CF patients?
- Question 4: Which techniques are available to investigate the NTM transmission in CF patients?


1) Direct person-to-person

2) Indirect person-to-person

3) Independently environmental exposure

 Until recent years: no evidence of person-to-person transmission of NTM → acquired from environmental exposure

Nowadays:

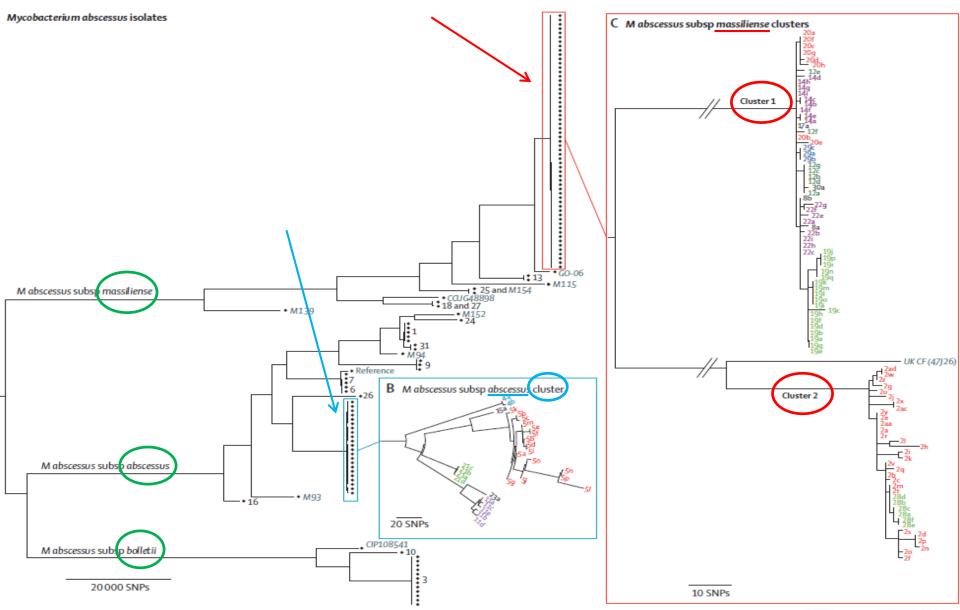
Respiratory Outbreak of *Mycobacterium abscessus* Subspecies *massiliense* in a Lung Transplant and Cystic Fibrosis Center

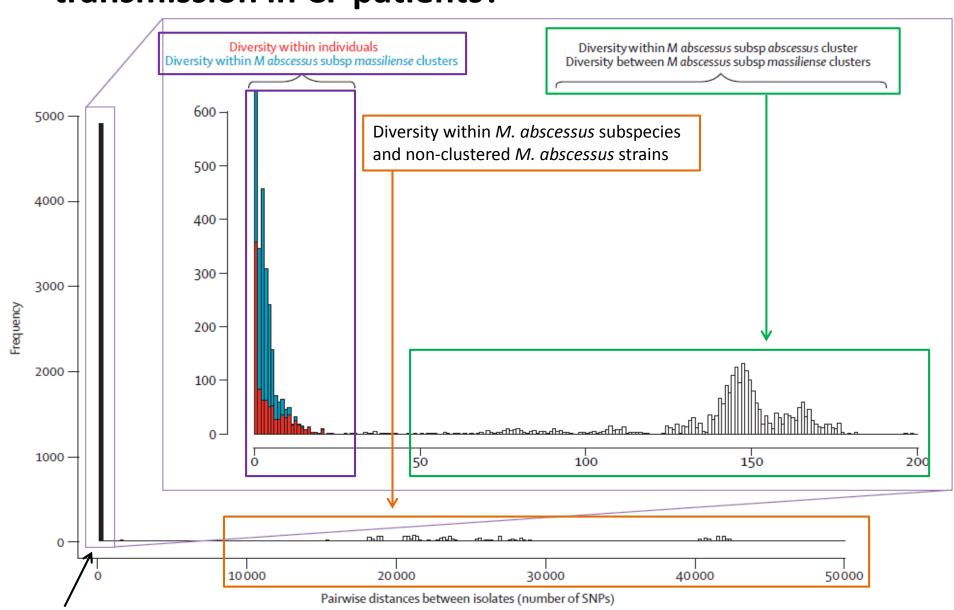
Moira L. Aitken M.D., Ajit Limaye M.D., Paul Pottinger M.D., Estella Whimbey M.D., Christopher H. Goss M.D., B.S., Mark R. Tonelli M.D., M.A., Gerard A. Cangelosi Ph.D., M. Ashworth Dirac B.S., B.A., Kenneth N. Olivier M.D., M.P.H., Barbara A. Brown-Elliott M.S., M.T., S.M., Steven McNulty B.S., and Richard J. Wallace, Jr. M.D.

- 0 2012
- 5 CF patients with M.
 abscessus subsp. <u>massiliense</u>
- → 5 strains indistinguishable by rep-PCR and PFGE

Aitken, M. L. et al. Respiratory Outbreak of Mycobacterium abscessus Subspecies massiliense in a Lung Transplant and Cystic Fibrosis Center. Am. J. Respir. Crit. Care Med., 2012

Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study


Josephine M Bryant*, Dorothy M Grogono*, Daniel Greaves, Juliet Foweraker, Iain Roddick, Thomas Inns, Mark Reacher, Charles S Haworth, Martin D Curran, Simon R Harris, Sharon J Peacock, Julian Parkhill, R Andres Floto


Whole-genome sequencing to identify transmission of *Mycobacterium abscessus* between patients with cystic fibrosis: a retrospective cohort study

- 31 CF patients (UK) with 168 M. abscessus isolates: WGS
 - → difference in SNP's

Conclusions:

- o *M. abscessus subsp. <u>massiliense</u>*: genetic difference between isolates from <u>different</u> individuals often <u>less</u> than variation of isolates seen <u>within</u> one person
 - → person-to-person transmission very **likely**; probably **indirectly**
- o *M. abscessus subsp. <u>abscessus</u>*: <u>independently</u> acquired either genetically diverse strains (non-clustered isolates) or a dominant circulating clone
 - → **no** person-to-person transmission



Whole-Genome Sequencing and Epidemiological Analysis Do Not Provide Evidence for Crosstransmission of Mycobacterium abscessus in a Cohort of Pediatric Cystic Fibrosis Patients

Kathryn A. Harris, 12 Anthony Underwood, Dervla T. D. Kenna, Anthony Brooks, Ema Kavaliunaite, Georgia Kapatai, 3 Rediat Tewolde,³ Paul Aurora,⁶ and Garth Dixon^{1,2}

- 20 pediatric CF patients (UK) with 27 M. abscessus isolates \rightarrow WGS and VNTR
 - 12/20 CF patients acquired *M. abscessus* the first time after initial contact with the hospital

UCL

11 patients: M. abscessus subsp. abscessus

- 3 patients: VNTR cluster I \rightarrow minimal exposure to other patients from VNTR cluster 1 + **several** times exposed to patients from VNTR cluster **2**
- 3 patients: VNTR cluster II \rightarrow 2/3 patients = siblings: **multiple** exposure + same environment...
- 5 patients: unique VNTR profiles
- Conclusion: person-to-person transmission was unlikely and these individuals must have independently acquired highly genetically related strains

Answer to question?

- Some studies (Aitken et al. and Bryant et al.) suggest person-to-person transmission
- o However, this could <u>not be confirmed</u> in the most recent study (Harris *et al.*)
- o Reasons for this discrepancy?
 - M. abscessus subsp. <u>massiliense</u> (Aitken et al. and Bryant et al.) is more transmissible than other M. abscessus subspecies (Harris et al.)?
 - Adults (Aitken et al. and Bryant et al.) experience more intense exposures or shed a higher load of NTM into the environment compared to children (Harris et al.)?
 - Difference in infection control practices between different CF centers?
 - Three types of transmission do co-exist?

Limitations:

- Some studies samples of the environment have not been taken
- o Limited number of CF patients and positive NTM cultures in each CF center
- Retrospective studies

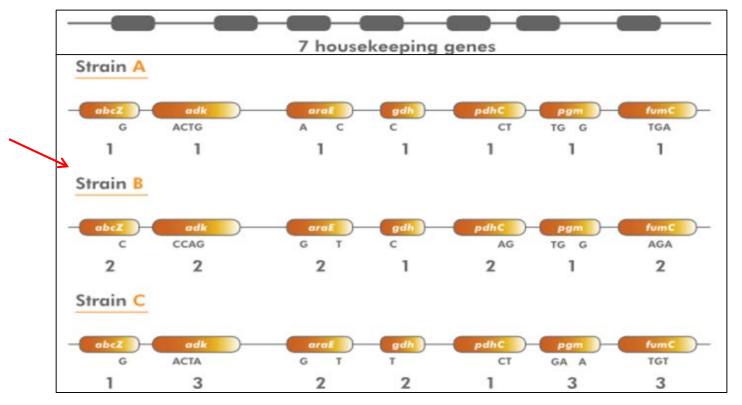
Table of contents

- Introduction
 - Cystic fibrosis (CF)
 - Taxonomy and classification of nontuberculous Mycobacteria (NTM)
 - Symptoms of NTM infection
 - o Epidemiology of NTM infection
 - Diagnosis of NTM lung infection
 - Treatment of NTM lung infection
- Question 1: What is the importance and clinical significance of NTM in CF patients?
- Question 2: How should NTM screening in CF patients be performed (preanalytical and analytical considerations)?

- Question 3: Is there evidence for direct or indirect person-to-person transmission in CF patients?
- Question 4: Which techniques are available to investigate the NTM transmission in CF patients?

- Identification up to <u>species</u> level:
 - Commercial reverse hybridization DNA probe assays:
 - INNO-LiPA Mycobacteria v2 (Innogenetics, Ghent, Belgium): 16 Mycobacteria species
 - Genotype Mycobacterium CM/AM kit (HAIN Lifescience GmbH, Nehren, Germany) 23
 Mycobacteria species
 - o MALDI-TOF: simple, suitable, reliable, and fast technique for identification of NTM
 - o **rpoB** gene: until recently used for identification of the 3 subspecies
 - o 16S rRNA gene
- Identification up to <u>subspecies</u> level:
 - o hsp65 and erm genes
- <u>Further</u> differentiation: to investigate transmission events and/or outbreaks
 - Whole-genome sequencing (WGS): used in studies of Harris et al. and Bryant et al.
 - Sequence data of the entire genome
 - Multiple Loci Variable number tandem repeat Analysis (MLVA) = VNTR: used in study of Harris et al.
 - Tandemly repeated sequences (= loci): repetitions of one or more nucleotides
 - → number of repetitions is hyper variable (4-50)

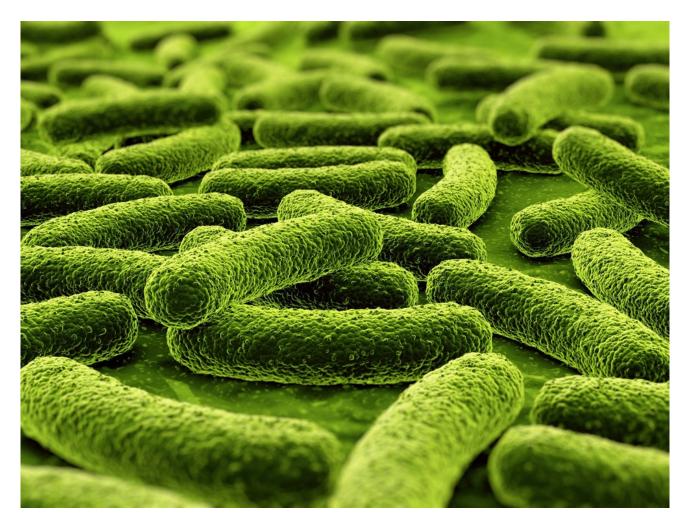
TGATGCATACATACATACATACATACATAGGACT


- Further differentiation: to investigate transmission events and/or outbreaks
 - Whole-genome sequencing (WGS):
 - Multiple Loci Variable number tandem repeat Analysis (MLVA) = VNTR
 - Tandemly repeated sequences (= loci): repetitions of one or more nucleotides
 → number of repetitions is hyper variable

TGATGCATACATACATACATACATACATAGGACT

- 1st step: PCR of the VNTR loci
- 2nd step: separation of the amplification products on agarose gels or by capillary electrophoresis
- 3^{rd} step: size of the amplification products \rightarrow calculation of the number of repetitions
- Example: "14-4-6-4-15-7-12-6" (8 loci) → "VNTR 1"

- Further differentiation: to investigate transmission events and/or outbreaks
 - Multi Locus Sequence Typing (MLST)
 - 1st step: PCR amplification of 6-8 housekeeping genes (MLST loci)
 - 2nd step: sequencing of the amplification products
 - Each different sequence is assigned a distinct allele number
 - Example: "2-2-1-2-1-2" \rightarrow sequence type 2 (ST2) or strain B


	WGS	MLVA (VNTR)	MLST/MLSA
ADVANTAGE	- PCR amplification isn't required	- rapid	- rapid
	- high degree of resolution	- inexpensive	
DISADVANTAGE	- price	- only a small part of the entire genome is analyzed	- only a small part of the entire genome is analyzed
			- high cost
REQUIREMENTS	sequencing system	standard PCR and gel electrophoresis/capillary electrophoresis	sequencing system
REQUIRED TIME	< 24h	5h (6 loci)	4-10h
COST	\$100	\$6 (6 loci)	\$40 (7 loci)
PRACTICAL INFORMATION	most used device: Illumina Hiseq platform	primers for loci: attachment 1 and 2	primers for housekeeping genes: attachment 3
REFERENCE	Bryant et al. and Harris et al.	Wong et al. and Harris et al.	Kim <i>et al.</i>

- Answer to question?
 - Variety of techniques available which allows the detection of epidemiological analysis of NTM transmission within CF patients
 - No 'gold standard' yet
 - Most studies: WGS and/or MLVA (VNTR)
 - Laboratory of the university Hospital Saint-Luc Brussels: soon evaluation of the MLVA method
- Questions for the future and to do actions:
 - o IF person-to-person transmission really happens: what is the <u>proportion</u>?
 - Creation of database: Belgian (European) CF centers should create a <u>database</u> with information about <u>M. abscessus</u> strains within CF patients to better comprehend the <u>situation</u>

Thank you for your attention!!

