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Abstract

Background: Emergence delirium, a manifestation of acute postoperative brain dysfunction, is frequently observed
after pediatric anesthesia and has been associated with the use of sevoflurane. Both xenon and dexmedetomidine
possess numerous desirable properties for the anesthesia of children with congenital heart disease, including
hemodynamic stability, lack of neurotoxicity, and a reduced incidence of emergence delirium. Combining both
drugs has never been studied as a balanced-anesthesia technique. This combination allows the provision of
anesthesia without administering anesthetic drugs against which the Food and Drug Administration (FDA) issued a
warning for the use in young children.

Methods/Design: In this phase-II, mono-center, prospective, single-blinded, randomized, controlled pilot trial, we
will include a total of 80 children aged 0–3 years suffering from congenital heart disease and undergoing general
anesthesia for elective diagnostic and/or interventional cardiac catheterization. Patients are randomized into two
study groups, receiving either a combination of xenon and dexmedetomidine or mono-anesthesia with sevoflurane
for the maintenance of anesthesia.
The purpose of this study is to estimate the effect size for xenon-dexmedetomidine versus sevoflurane anesthesia
with respect to the incidence of emergence delirium in children. We will also describe group differences for a
variety of secondary outcome parameters including peri-interventional hemodynamics, emergence characteristics,
incidence of postoperative vomiting, and the feasibility of a combined xenon-dexmedetomidine anesthesia in
(Continued on next page)
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children.

Discussion: Sevoflurane is the most frequently used anesthetic in young children, but has been indicated as an
independent risk factor in the development of emergence delirium. Xenon and dexmedetomidine have both been
associated with a reduction in the incidence of emergence delirium. Combining xenon and dexmedetomidine has
never been described as a balanced-anesthesia technique in children. Our pilot study will therefore deliver
important data required for future prospective clinical trials.

Trial registration: EudraCT, 2018–002258-56. Registered on 20 August 2018. https://www.clinicaltrialsregister.eu.

Keywords: Anesthetics, Inhalation, Xenon, Sevoflurane, Dexmedetomidine, Emergence delirium, Pediatric anesthesia

Background
Emergence delirium (ED) is a manifestation of acute
postoperative brain dysfunction that occurs with a rela-
tively high frequency after pediatric anesthesia. The inci-
dence varies depending on the diagnostic criteria used
and the combination of administered anesthetic drugs
[1]. It can be associated with either short-term complica-
tions, such as an increased risk of injury in children, par-
ental dissatisfaction, increased costs, and length of
hospital stay, or potential long-term consequences, in-
cluding persistent psychological and behavior problems
[2]. While the exact pathophysiological mechanisms
underlying ED remain unknown, the use of sevoflurane
has been identified as one of the most important risk
factors [3, 4] There is a continuous search for anes-
thetics that ameliorate or avoid the occurrence of emer-
gence agitation [2].
In children with congenital heart disease (CHD),

therapeutic decisions are often based on the
hemodynamic parameters measured during cardiac
catheterization. The ideal anesthetic technique for this
procedure should maintain hemodynamics that reflect
awake baseline conditions to provide the best thera-
peutic option. Unfortunately, most anesthetics affect
myocardial function and the vascular tone, and the ideal
anesthetic regimen for these procedures remains a sub-
ject of debate.
In adults, xenon anesthesia preserves baseline blood

pressure (BP) better than volatile anesthetics or propofol
[5]. Moreover, xenon has been repeatedly demonstrated
to offer neuroprotection in various animal models and
models of neuronal injury [6]. More specifically, xenon
has been demonstrated to attenuate isoflurane-induced
neurotoxicity in rats [7]. Whereas xenon can be used as
a mono-anesthetic in adults, it can possibly only be used
as an additive to other anesthetics in children. The mini-
mum alveolar concentration (MAC) of xenon in children
is unknown but, concurring with other anesthetics, is ex-
pected to be higher than in adults (MAC 63.1%) [8]. In a
meta-analysis, the MAC of xenon for children at the age
of 1 year was calculated to be 92% [9]. As a conse-
quence, xenon can only be used in sub-anesthetic

concentrations for children to guarantee an inspiratory
oxygen concentration of at least 30%. While sub-
anesthetic concentrations of xenon were demonstrated
to be neuroprotective [10], they need to be supple-
mented by another anesthetic or sedative drug to
achieve sufficient depth of anesthesia.
We previously demonstrated in children with CHD

that the addition of 60% xenon to sevoflurane resulted
in a 60% reduction of the mean expiratory sevoflurane
concentration of sevoflurane to achieve a comparable
depth of anesthesia [11, 12]. Moreover, we did find a de-
creased incidence of ED when xenon was added to sevo-
flurane anesthesia [11]. However, we could not
demonstrate increased hemodynamic stability. Most
probably, the hemodynamic advantages known from
adults receiving mono-xenon anesthesia were masked by
the necessary addition of sevoflurane to achieve an ac-
ceptable depth of anesthesia in children receiving xenon.
The ideal drug to add to xenon for balanced anesthesia

should potentiate the anesthetic effects of xenon without
jeopardizing hemodynamic stability.
Due to its sedative, anxiolytic, sympatholytic, and anal-

gesic properties, dexmedetomidine has recently been in-
troduced in different areas of pediatric anesthesia as an
adjunct for balanced anesthesia, for premedication or as
part of sedation techniques. Moreover, a recent system-
atic review and meta-analysis in pediatric patients
undergoing congenital cardiac surgery found the admin-
istration of dexmedetomidine to result in more stable in-
traoperative hemodynamics, a lower incidence of ED,
and an attenuated stress response [13–15]. A sparing ef-
fect of the MAC for sevoflurane has been demonstrated
when an initial bolus of dexmedetomidine was followed
by an infusion [16]. Moreover, the infusion of dexme-
detomidine produced a dose-dependent decrease in
the amount of sevoflurane required to produce 50%
excellent tracheal intubation conditions in children
[17]. Notably, like xenon, dexmedetomidine was also
found to have neuroprotective properties in preclin-
ical research. More specifically, it was observed that
dexmedetomidine protects against anesthesia-induced
neurotoxicity [18].
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Altogether we can conclude that both xenon and
dexmedetomidine possess numerous desirable proper-
ties with respect to the treatment of pediatric patients
with CHD, including a benign hemodynamic profile
[5, 14, 15], a reduced catecholamine release,
anesthetic-sparing effects, a decreased incidence of
ED, and neuroprotective effects [13]. This innovative
combination of xenon and dexmedetomidine could be
of particular interest for pediatric anesthesia, as com-
bining these anesthetics has never been described as a
balanced-anesthesia technique in children. Moreover,
pediatric data on both drugs are scarce and, therefore,
the FDA had no evidence to include these products
in the “list of general anaesthetic and sedation drugs”
for which a label change was requested indicating
that “the repeated or lengthy use during surgeries or
procedures in children younger than three years or in
pregnant women during their third trimester may
affect the development of children’s brains” [19].

Methods/Design
Aim of the study
The primary aim of this study is to describe the effect
size for xenon-dexmedetomidine versus sevoflurane
anesthesia with respect to the incidence of emergence
delirium in children with CHD undergoing elective diag-
nostic/interventional cardiac catheterization. The sec-
ondary aim is to estimate group differences for a variety
of secondary outcome parameters including peri-
interventional hemodynamics, emergence characteristics,
incidence of postoperative vomiting, and the feasibility
of a combined xenon-dexmedetomidine anesthesia in
children.

Design of the study
The design of this study is reported in accordance with
the SPIRIT 2013 Checklist: Recommended items to ad-
dress in a clinical trial protocol (Additional file 1) [20].
This prospective, randomized, controlled, observer-

blinded trial is performed at the University Hospitals of
the KU Leuven by two types of investigators. Investiga-
tor I assesses the primary outcome (and the majority of
the secondary outcome parameters) and is blinded to
the group affiliation. Investigator II performs anesthesia
and cannot be blinded to the treatment groups due to
the mandatory monitoring of anesthetic concentrations.
As a consequence, this study has to be performed
observer-blinded.
The trial is conducted in compliance with the princi-

ples of the Declaration of Helsinki, the Principles of
Good Clinical Practice, and in accordance with all ap-
plicable regulatory requirements. The protocol (version
SD-DXP: 2 06-08-2018) and related documents were ap-
proved by the Ethics Committee of the University

Hospitals Leuven (S61690 August 18th 2018) and the
Federal Agency for Medicines and Health Products,
Brussels, Belgium for Clinical Trial Authorization
(FAGG/R&D/BEN/ben 1,111,021; 20 August 2018). The
study is registered in the European Clinical Trails Data-
base of the European Medicines Agency (EudraCT:
2018–002258-56) (see Additional file 2 for additional
trial registration items).
To avoid selection bias, randomization and allocation

concealment will be used. Patients are randomized to
one of the study groups using a software-generated allo-
cation sequence (RandList, V. 1.2). Group assignment is
ensured by using sealed, opaque, sequentially numbered
envelopes, which are opened only after arrival of the pa-
tient in the interventional room. As mentioned above,
the attending anesthesiologist cannot be blinded for the
treatment allocation. Consequently, a code break is not
necessary.

Inclusion and exclusion criteria
We screen all consecutive children scheduled for elective
(diagnostic or therapeutic) heart catheterization under
general anesthesia. We include children aged 1 month to
3 years.
Exclusion criteria comprise the lack of parental in-

formed consent, a cyanotic congenital heart defect pos-
sibly requiring a FiO2 of > 50% during the procedure,
high-risk and complex interventional procedures (as de-
fined by the pediatric cardiologist), evidence of behav-
ioral or cognitive impairment, and the presence of a
contraindication for the use of one of the investigated
drugs.

Outcome parameters
Primary endpoint

� Incidence of ED as assessed by the Watcha-scale (4-
point agitation scale) (Table 1) [21, 22]. A patient will
be classified as having ED in case of a Watcha-scale ≥
3. Moreover, every patient will also be tested using
the “Pediatric Anesthesia Emergence Delirium Scale”
(PAED scale) (Table 2). A patient will be classified as
having ED in case of a PAED scale ≥ 10 [1, 15, 17]. In
case of conflicting observations between the Watcha
and the PAED scale, the results of the Watcha scale
will be the crucial factor for the diagnosis of ED.

Table 1 WATCHA scale or 4-point agitation score [21]

WATCHA Scale

Child is calm 1

Child is crying but can be consoled 2

Child is crying and cannot be consoled 3

Child is agitated and thrashing around 4
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Secondary endpoints

� Intraoperative hemodynamics:
Heart rate (HR)
Non-invasive BP (NIBP; systolic BP [SBP] and

diastolic BP [DBP] and mean arterial pressure
[MAP])

Requirements of vasopressors, inotropes,
chronotropes, and/or fluid boluses

� Incidence and duration of cerebral desaturation,
defined as a decrease in regional cerebral tissue
oxygenation (rScO2) of > 20% from baseline

� Feasibility parameters:
Adequate depth of anesthesia as assessed with

physiological signs (absence of movements, no rise
in HR or BP of > 30% from baseline) and
bispectral index (BIS) values

Requirement of rescue medication to achieve
an appropriate depth of anesthesia

Intraoperative respiratory profile (pulse
oximetry and capnography)
▪ arterial oxygen saturation (SaO2)
▪ end-tidal CO2

� Recovery parameters (measured from the stop of
study treatment inhalation):

Time to open eyes, time to extubation, time to
Aldrete score ≥ 9 (readiness for discharge) [24]

Recovery index: RI=
1þAldrete score at T5

ð2•time to extubationÞþtime to open eyes [25]

Length of Post Anesthesia Care Unit (PACU)
stay

Length of hospital stay
� Other:

Levels of serum protein S100β, IL-6, and IL-10
assessed at two time points (beginning and end of
the procedure)

Radiation dose
Time of procedure

Safety endpoints

Incidence of postoperative vomiting (POV)
▪ On the PACU

▪ 12–24 h postoperatively
All other (serious) adverse events ((S)AE)

Sample size
To date, the combination of dexmedetomidine and
xenon has not yet been studied in humans. The present
study is designed as a pilot trial with the aim of estimat-
ing the effect size for xenon-dexmedetomidine
anesthesia versus sevoflurane anesthesia with respect to
the incidence of ED. In a previous study by our group in
a similar patient population, we observed a 40% inci-
dence of ED in children receiving sevoflurane. We ex-
pect an accrual of 80 children in the planned study
period of 2 years. With an inclusion of a total of 80 pa-
tients, we expect to have at least 35 children in each
group when anticipating possible dropouts. It is assumed
that the combination of xenon-dexmedetomidine is ef-
fectively reducing the incidence of emergence delirium
to 20% (i.e. a 20% absolute risk reduction). This esti-
mated effect size is based on own data comparing
sevoflurane-xenon anesthesia with sevoflurane
anesthesia [11] and on a recent meta-analysis reporting
an odds ratio of 0.28 (95% confidence interval [CI] 0.19–
0.40) for the effect of the intraoperative use of dexmede-
tomidine on the incidence of emergence delirium [26].
Based on an asymptotic 95% CI, the expected precision
(half width of the CI) for the absolute risk reduction
equals 21%, which is given by 1.96 times the standard
deviation of the absolute risk reduction.

Investigational plan and treatments
Preoperative treatment and monitoring
To objectively assess emergence parameters, the children
receive no benzodiazepines for anxiolysis but the parents
are encouraged to accompany their children until the in-
duction of anesthesia. After arrival in the intervention
room, the following monitoring is established and re-
corded every 5 min from the pre-anesthesia period to
extubation: SaO2, NIBP (SBP-DBP-MAP), HR, FiO2,
end-tidal O2 and CO2, temperature, rScO2, and BIS.

Induction of anesthesia
Anesthesia is induced with propofol 3 mg∙kg− 1, fentanyl
2 μg∙kg− 1, and rocuronium 0.3 mg∙kg− 1 as an

Table 2 PAED score [23]

PAED-scoring

Point Description of item Not at all Just a little Quite a bit Very much Extremely

1 Child makes eye contact with caregiver 4 3 2 1 0

2 Child’s actions are purposeful 4 3 2 1 0

3 Child is aware of the surroundings 4 3 2 1 0

4 Child is restless 0 1 2 3 4

5 Child is inconsolable 0 1 2 3 4
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intravenous bolus. Dexamethasone 0.15 mg∙kg− 1 and
ondansetron 0.1 mg∙kg− 1 are given as standard POV
prophylaxis. In the exceptional case that no intravenous
line is available at induction, anesthesia is induced by
mask-inhalation of sevoflurane in both study groups. In
these cases, sevoflurane is immediately stopped once
intravenous access has been achieved in group A (dex-
xenon group).

Maintenance of anesthesia (anesthesia intervention)
Eligible children are randomly assigned to one of the
two study groups:

� In group A (dex-xenon group), a loading dose of 1
μg∙kg− 1 of dexmedetomidine is administered at
induction and anesthesia is maintained by a
continuous infusion of dexmedetomidine (0.5–1.0
μg∙kg− 1∙h) and xenon 50%–65% in oxygen.

� In group B, anesthesia is maintained with
sevoflurane alone (FiO2 = 0.25–0.4).

In group A, the infusion of dexmedetomidine and in
group B the sevoflurane end-tidal concentrations are ti-
trated to achieve physiological signs suggestive of an suf-
ficient depth of anesthesia and BIS values in the range of
40–60.

Fluid management and postoperative analgesia
Fluid management is performed according to the “4/
2/1-rule” (mL∙kg− 1∙h− 1) using a balanced crystalloid
solution [27]. At the end of the procedure, all chil-
dren receive paracetamol (15 mg∙kg− 1) for postopera-
tive analgesia.

Standardized treatment of insufficient depth of anesthesia
In case of an insufficient depth of anesthesia, the dose of
the maintenance anesthetic regimen is increased (xenon-
dex group [group A]: dexmedetomidine infusion up to
1.2 μg∙kg− 1∙hr.− 1; sevo-group [group B]: increase of the
age-corrected sevoflurane-concentration up to 1.5
MAC). If still no adequate plane of anesthesia can be
achieved, a bolus of propofol (1–2 mg∙kg− 1) or fentanyl
(1 μg∙kg− 1) is administered.

Standardized treatment of hemodynamic instability
Isolated blood pressure drops > 20% from baseline are
treated with a bolus of phenylephrine (2–3 μg∙kg− 1)
and/or a bolus of fluid (crystalloid 10 mL∙kg− 1); isolated
HR declines with a bolus of atropine (10–20 μg∙kg− 1)
and the combination of hypotension and bradycardia
with a bolus of ephedrine (50–100 μg∙kg− 1).

Study flow
Visit 0: Recruitment and baseline measurement visit
After the obtainment of written parental informed
consent (by one of the investigators), baseline data
are evaluated and recorded (demographic data, med-
ical and surgical history, routine clinical examination)
(Figs. 1 and 2).

Visit 1: General anesthesia for cardiac catheterization by
investigator II
General anesthesia will be induced and maintained as
described above.
At the beginning and the end of the procedure, a

blood gas sample and 2 mL of blood are obtained from
the procedural sheet. After centrifugation, concentra-
tions of S100β, IL-6, and IL-100 are determined using
ELISA.

Visit 2: Post-anesthesia study visit PACU by investigator I
This visit is performed from the moment of extubation
until 60 min after extubation and consists of the follow-
ing assessments:

� Assessment of HR, BP, and peripheral oxygen
saturation at 5, 10, 15, 30, 45, and 60 min after
extubation.

� Assessment of POV at 5, 10, 15, 30, 45, and 60 min
after extubation. An emetic episode is defined as a
single or continuing occurrence of vomiting or
retching. Distinct episodes are defined by an interval
of respite of > 1 min. Rescue medication is offered
once the patient has more than one emetic episode
or on request of the patient or his parents ask.

� Aldrete score at 5, 10, 15, 30, 45, and 60 min after
extubation.

� Assessment of emergence delirium by means of the
“Four-point Agitation Scale” and the “PAED scale”
at 5, 10, 15, 30, 45, and 60 min after extubation.

� Assessment of the incidences of (S)AEs.

Visit 3: Study end visit at the morning (12–24 h) after the
procedure by investigator I
A routine clinical examination (including HR and BP)
and the assessment of POV and (S)AE incidences are
performed by investigator I on the day after the
procedure.

Data processing and statistical methodology
Intraoperative data are recorded manually every 5 min
on specific case record forms (CRF). Regional cerebral
tissue oxygenation (rScO2) is electronically recorded
every second. Important pre- and postoperative data are
manually documented during the pre-specified visits on
CRFs. All data from the CRFs are anonymized and
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transferred into an electronic database (OpenClinica,
LLC, Waltham, MA, USA). Direct access to source data
and databases can be provided for trial-related monitor-
ing, audits, EC review, and regulatory inspections.
All randomized patients will be included in the

analyses. An investigator or a study nurse will review
completed CRFs for completeness and correctness
before digitalization and statistical analysis. Missing
data will be identified, if possible drawn from source
data, and filled into the CRFs. All results will be an-
alyzed on an intention-to-treat basis. Statistical ana-
lysis will be performed using SPSS 23 software (SPSS
Statistics for Windows, IBM, Armonk, NY, USA) or
Prism® Software (Prism®, GraphPad Software, Inc., La
Jolla, CA, USA). Since the aim of the study is ex-
ploratory, summary statistics (%, medians, means)
and effect sizes with their 95% CI will be calculated.
For the primary outcome and other binary variables,
the absolute risk difference and its exact 95% CI will
be reported; for normally distributed variables the
difference in mean and a t-distribution-based 95% CI
will reported; and for non-normal or ordinal vari-
ables the Hodges-Lehmann estimate with its 95% CI
will be reported.

Discussion
ED is a frequently observed condition following pediatric
anesthesia as a consequence of which a child experiences
emotional suffering, restlessness, and psychomotor dis-
turbances. It can last up to 45 min, interferes with recov-
ery, is associated with prolonged length of stay in the
PACU and the hospital, and parental dissatisfaction.
Additionally, ED can result in long-term maladaptive
and behavioral disturbances (e.g. insomnia, fear, bed
wetting, etc.) [2]. The diagnosis of ED remains notori-
ously difficult in young children. For several reasons, we
opted in this study (as we did in several previous ones)
for the Watcha scale as an instrument to assess the inci-
dence of ED in this young population [11, 12, 28]. In
fact, the frequently used PAED scale was derived and
validated in a cohort of children with a mean age of 3.7
years [23]. In clinical practice, several items of the PAED
(e.g. eye contact with the caregiver or awareness of the
surrounding) appear very difficult to assess in neonates
and infants. Interestingly, the latter items have recently
been identified to be indicative for pain rather than for
delirium [29]. Moreover, in a direct comparison of dif-
ferent scaling systems, the Watcha scale was found to be
a more practical tool to assess ED in children after

Fig. 1 Schematic overview of the different steps of the study visits
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surgery and to have the highest overall sensitivity and
specificity [22]. Note that the results of testing with the
PAED scale will also be reported to allow comparison
between these two instruments, an approach that is now
increasingly be performed in the literature [4].
We specifically choose this patient population because:

(1) the brains of these children are probably vulnerable
to the adverse neuropsychiatric effects of sevoflurane; (2)
younger age is a risk factor for ED; and (3) we observed
a high incidence of ED in a population of children of the
same age undergoing the same procedure [4, 11, 30].
Assessing the depth of anesthesia in children remains

controversial. Moreover, the validity of the BIS monitor
has never been formally tested in children undergoing
combined anesthesia with xenon and sevoflurane. Avail-
able evidence suggests, however, that the BIS monitor is
a suitable instrument to assess the depth of xenon
anesthesia. In one study, during balanced xenon
anesthesia, BIS values correlated well with the clinical
assessment of hypnotic depth and were within the rec-
ommended range of adequate anesthesia [31]. Moreover,
Stoppe et al. demonstrated that the BIS showed a similar
response to xenon as to sevoflurane-anesthesia. In the
latter study, the depth of anesthesia was additionally

confirmed by the measurement of auditory evoked po-
tentials [32]. Lastly, EEG changes observed during xenon
anesthesia resembled closely those instigated by propofol
[33]. Furthermore, although age-related changes in BIS
values in children were observed, it has been suggested
that the BIS is a reliable monitor of depth of anesthesia
at least in children aged > 1 year, showing better per-
formance with increasing age [34, 35]. Note that in our
study, the adequacy of depth of anesthesia will primarily
be assessed by physiological signs (absence of HR or BP
increases and involuntarily movements) and the BIS
monitor is only an additional tool to quantify depth of
anesthesia.
We will assess the peri-interventional release of S100β

as a secondary endpoint. The astroglial receptor protein
S100β is involved in several cellular processes such as
neuronal differentiation, axonal growth, and calcium
homeostasis [36]. Increased levels of S100β in the per-
ipheral blood have been suggested to indicate an in-
creased permeability of the blood–brain barrier and
found to be associated with neurotrauma, cerebral ische-
mia, cardiac arrest, and cardiac surgery [37]. In neonates
suffering from CHD, levels of S100β were described to
be inversely related to cerebral blood flow and to

Fig. 2 Schedule of enrolment, interventions, and assessments (SPIRIT)
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mortality [38]. In children undergoing general anesthesia
for cardiac catheterization, we recently reported early
neurocognitive deficits that were paralleled by an in-
crease in S100β blood levels [12]. In adult patients
undergoing cardiac surgery, high levels of S100β were
observed to be correlated with adverse neuropsycho-
logical and psychiatric outcomes [39] and to predict the
occurrence of postoperative delirium [36]. The exact
mechanisms resulting in a perioperative/peri-interven-
tional increase in S100β remain still unknown but might
involve neuro-inflammatory pathways with astrocytes
being stimulated by cytokines originating from systemic
inflammation to release S100β. Therefore, we will also
assess the peri-interventional release of the pro- and
anti-inflammatory cytokines IL-6 and IL-10 in our popu-
lation. We acknowledge that the findings will be
exploratory, solely describe associations, and should not
be used to assess causation.
The current standard of care for general anesthesia in

childhood overall, and for cardiac catheterization more
specifically, is sevoflurane. The use of sevoflurane has
been linked to an increased incidence of ED [4]. More-
over, sevoflurane was listed by the FDA as potentially
neurotoxic when used in children aged < 3 years (during
the episode of rapid brain development). In contrast,
dexmedetomidine and xenon have no proven neurotox-
icity in preclinical research and even have the potential
to reduce the incidence of ED [40]. The combination of
both drugs has never been described as a balanced-
anesthesia technique in children.
The exposure of young children to the combination of

dexmedetomidine and xenon will provide the first hu-
man data of a pediatric anesthesia regimen without the
use of any drugs that were indicated by the FDA to
potentially impair neurodevelopmental outcome when
repeatedly or lengthily used for general anesthesia and
sedation during surgeries or procedures in children aged
< 3 years or in pregnant women during their third tri-
mester of pregnancy.
We acknowledge that our study is subject to several

limitations. First, the attending anesthesiologist cannot
be blinded for the interventional treatment. However,
the primary outcome will be assessed by an investigator
unaware of the treatment allocation (“observer blinded”).
Second, it is not defensible to extrapolate the feasibility
of xenon and dexmedetomidine as adjuncts for general
anesthesia in young children undergoing cardiac
catheterization to surgical settings with severe painful
stimulation. Third, this randomized controlled trial is
not designed to prove the potential superiority of xenon/
dexmedetomidine versus sevoflurane anesthesia with re-
gard to the incidence of ED. To perform a trial with this
purpose, a precise idea of the expected ED incidences is
necessary for appropriate sample size estimation. The

current study will deliver data allowing to design an ad-
equately powered randomized controlled trial addressing
this research question. Note that the current study is
also not sufficiently powered for all secondary endpoints,
which should, therefore, be considered as purely ex-
plorative and hypothesis-generating.
In conclusion, this pilot trial will be performed to in-

vestigate the incidence of ED in an anesthesia regimen
that does not involve sevoflurane. Moreover, we will
study the feasibility and the safety of combined
dexmedetomidine-xenon anesthesia in children.

Benefits for the participating patients
There is no guarantee that the combination of dexmede-
tomidine and xenon, instead of standard treatment with
mono-sevoflurane, will result in less ED or any other
medical advantage to the participant.

Safety issues
Standard hemodynamic monitoring in the setting of a
fully equipped cardiac catheterization room enables
immediate detection and treatment of AEs. Xenon inhal-
ation or dexmedetomidine-infusion will be stopped
immediately in case of a life-threatening deterioration of
a study patient. All study participants will be closely
monitored by the study team for the occurrence of
(S)AEs. Moreover, the inclusion of each individual pa-
tient into the study is indicated in the electronic hospital
information system and hence visible to all physicians
and nurses involved in the care of this patient. This facil-
itates reporting of (S)AEs to the principal investigator.
The principal investigator will report suspected unex-
pected serious adverse reactions (SUSARs) to the federal
health authorities. Furthermore, study data will be regu-
larly checked for safety by an independent clinical
pediatric cardiologist who is not involved in this clinical
trial. Lastly, the study is regularly audited by the clinical
trials center of the sponsor (UZ Leuven).

Data handling
All information and data relating to the study will be
treated as confidential and such information will not be
disclosed to any third parties or used for any purpose
other than the performance of the study. The collection,
processing, and disclosure of personal data such as pa-
tient health and medical information are in compliance
with applicable European and national laws on personal
data protection and the processing of personal data. Our
data will be coded (continued link between the data and
the individual who provided it). The participant’s name
or other identifiers will be stored separately (in the in-
vestigators’ site file) and replaced with a unique code to
create a new identity for the subject. Data will be en-
tered into an electronic case record form (OpenClinica,
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Waltham, MA, USA). The study will be monitored by
the clinical trials center of the UZ Leuven.

Trial status

a. Protocol version number and date: protocol SD-
DXP 2 06-08-2018, approved by the ethics commit-
tee on 18 August 2018

b. Date recruitment began: 18 December 2018
c. Current status: 40 out of 80 patients have been

recruited at the time of writing the manuscript
d. Approximate date when recruitment will complete:

30 June 2020

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13063-020-4231-5.

Additional file 1. SPIRIT 2013 Checklist: Recommended items to address
in a clinical trial protocol.

Additional file 2. World Health Organization trial registration dataset.

Additional file 3. Informed consent.
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