CAT

Dosisaanpassing van antibiotica, toepasbaarheid van beschikbare calculators

Apr. Glynis Frans Supervisor: Prof. Apr. Katrien Lagrou

Questions

1. What are the current guidelines and recommendations on TDM for vancomycin therapy in S. aureus infections?

2. Which methods are available for individualized vancomycin dosing? Can the use of pharmacokinetic software improve clinical outcome?

3.

How are guidelines and recommendations on vancomycin TDM implemented in Leuven and Belgium as a whole? Is there truly a need for software-driven approaches?

1.

What are the current guidelines and recommendations on TDM for vancomycin therapy in S. aureus infections?

- Cationic glycopeptide antibiotic
- Slowly bactericidal for Gram-positive bacteria
- Forms stable complex with peptidoglycan precursor lipids
- Ototoxicity and nephrotoxicity

TDM

- Balancing resistance, efficacy, and toxicity !
- Warranted in the following patient groups
 - High doses or prolonged therapy (> 3 days),
 - Treatment with nephro- or ototoxic agents
 - Unstable renal function or renal replacement therapy
 - Hemodynamically unstable septic patients
- Primary pharmacodynamic parameter: AUC/MIC ≥ 400
 - Good correlation between AUC/MIC and through levels

Summary	Recommendation	Evidence
Dosage	 Initial dosage calculated on the basis of actual body weight Dosage adjustments based on actual serum concentrations Continuous infusion is unlikely to significantly improve patient outcome compared to intermittent dosing 	Level II - A
Monitoring peak vs. trough concentrations	 Through serum concentrations are the most accurate and practical Through serum concentrations should be obtained at steady-state conditions, approximately just before the fourth dose 	Level II – B
Avoidance of resistance development	 Through serum concentrations > 10 mg/L are recommended to avoid resistance development 	Level III - B
Recommended through	 Through serum concentrations of 15-20 mg/L are recommended. 	Level III – B
serum concentrations	A loading dose of 25 – 30 mg/kg (ABW) can be considered. — The infusion period should be extended to $1.5 - 2$ h when individual doses exceed 1 g	Level III – B Level III – B
Vancomycin toxicity	 Vancomycin-induced nephrotoxicity = multiple high serum creatinine concentrations documented after several days of vancomycin treatment in the absence of another explanation 	Level II – B
Toxicity reduction through	 Monitoring of peak serum concentrations is not recommended to decrease the incidence of nephrotoxicity 	Level I – A
the monitoring of serum concentrations	 Monitoring through serum concentrations to reduce nephrotoxicity is suited for patients receiving aggressive dose targeting (15-20 mg/L) or who are at risk of toxicity 	Level III – B
	 Monitoring through serum concentrations is recommended for patients with unstable renal function and for patients receiving a prolonged course of therapy (> 3 -5 days) 	Level II – B
	 At least 1 steady-state through concentration (just before 4th dose) should be measured in patients receiving prolonged vancomycin treatment 	Level II – B
	 Frequent monitoring (> 1 measurement) for short-course therapy (< 5 days) or lower-intensity dosing (serum through concentrations < 15 mg/L) is not recommended 	Level II – B
	 The exact frequency of monitoring depends on the clinical presentation. One-weekly measurements suffice for hemodynamically stable patients, while frequent (often daily) monitoring is advised in hemodynamically unstable patients to prevent toxicity. 	Level III – B
	 Monitoring through serum concentrations is not recommended to prevent ototoxicity. 	Level III – B

Summary	Recommendation	Evidence
Dosage	 Initial dosage calculated on the basis of actual body weight Dosage adjustments based on actual serum concentrations Continuous infusion is unlikely to significantly improve patient outcome compared to intermittent dosing 	Level II - A
Monitoring peak vs. trough concentrations	 Through serum concentrations are the most accurate and practical Through serum concentrations should be obtained at steady-state conditions, approximately just before the fourth dose 	Level II – B
Avoidance of resistance development	 Through serum concentrations > 10 mg/L are recommended to avoid resistance development 	Level III - B
Recommended through	 Through serum concentrations of 15-20 mg/L are recommended. 	Level III – B
serum concentrations	 A loading dose of 25 – 30 mg/kg (ABW) can be considered. 	Level III – B
	 The infusion period should be extended to 1.5 – 2 h when individual doses exceed 1 g 	Level III – B
Vancomycin toxicity	 Vancomycin-induced nephrotoxicity = multiple high serum creatinine concentrations documented after several days of vancomycin treatment in the absence of another explanation 	Level II – B
Toxicity reduction through	 Monitoring of peak serum concentrations is not recommended to decrease the incidence of nephrotoxicity 	Level I – A
the monitoring of serum concentrations	 Monitoring through serum concentrations to reduce nephrotoxicity is suited for patients receiving aggressive dose targeting (15-20 mg/L) or who are at risk of toxicity 	Level III – B
	 Monitoring through serum concentrations is recommended for patients with unstable renal function and for patients receiving a prolonged course of therapy (> 3 -5 days) 	Level II – B
	 At least 1 steady-state through concentration (just before 4th dose) should be measured in patients receiving prolonged vancomycin treatment 	Level II – B
	 Frequent monitoring (> 1 measurement) for short-course therapy (< 5 days) or lower-intensity dosing (serum through concentrations < 15 mg/L) is not recommended 	Level II – B
	 The exact frequency of monitoring depends on the clinical presentation. One-weekly measurements suffice for hemodynamically stable patients, while frequent (often daily) monitoring is advised in hemodynamically unstable patients to prevent toxicity. 	Level III – B
	 Monitoring through serum concentrations is not recommended to prevent ototoxicity. 	Level III – B

2.

Which methods are available for individualized vancomycin dosing?

Can the use of pharmacokinetic software improve clinical outcome?

Dosing methods • Different algorithms have been already been developed for vancomycin monitoring

- Population methods
- Linear regression analysis
- Bayesian estimation

Dosing methods

Population

- A priori dosing methods or nomograms
- Population estimates of pharmacokinetic parameters

Examples

• Kullar	nomogram
----------	----------

- Based on Cl_{CR} and total weight
- Intermittent infusion
- Adult patients with stable parameters
- Target through: 15-20 mg/L

		Creatinine Clearance (ml/minute)										
\square		40-49	50-59	60-69	70–79	80-89	90-99	≥ 100				
	50–54	500 mg q12h	750 mg q12h	1000 mg q12h	750 mg q8h	1000 mg q8h	1000 mg q8h	1250 mg q8h				
	55–59	750 mg q12h	1000 mg q12h	1250 mg q12h	750 mg q8h	1000 mg q8h	1000 mg q8h	1250 mg q8h				
	60–64	750 mg q12h	1000 mg q12h	1250 mg q12h	750 mg q8h	1000 mg q8h	1250 mg q8h	1500 mg q8h				
	65–69	750 mg q12h	1000 mg q12h	1250 mg q12h	1000 mg q8h	1000 mg q8h	1250 mg q8h	1500 mg q8h				
66	70–74	750 mg q12h	1250 mg q12h	750 mg q8h	1000 mg q8h	1250 mg q8h	1500 mg q8h	1500 mg q8h				
t (k	75–79	1000 mg q12h	1250 mg q12h	750 mg q8h	1000 mg q8h	1250 mg q8h	1500 mg q8h	1750 mg q8h				
eigh	80-84	1000 mg q12h	1250 mg q12h	1000 mg q8h	1250 mg q8h	1250 mg q8h	1500 mg q8h	1750 mg q8h				
Ň	85–89	1000 mg q12h	1250 mg q12h	1000 mg q8h	1250 mg q8h	1500 mg q8h	1750 mg q8h	2000 mg q8h				
	90–94	1000 mg q12h	1500 mg q12h	1000 mg q8h	1250 mg q8h	1500 mg q8h	1750 mg q8h	2000 mg q8h				
	95–99	1250 mg q12h	1500 mg q12h	1000 mg q8h	1250 mg q8h	1500 mg q8h	1750 mg q8h	2000 mg q8h				
	100-104	1250 mg q12h	1500 mg q12h	1250 mg q8h	1500 mg q8h	1750 mg q8h	2000 mg q8h	2000 mg q8h				
	105-109	1250 mg q12h	1500 mg q12h	1250 mg q8h	1500 mg q8h	1750 mg q8h	2000 mg q8h	2250 mg q8h				
	≥ 110	1250 mg q12h	1500 mg q12h	1250 mg q8h	1500 mg q8h	1750 mg q8h	2000 mg q8h	2250 mg q8h				

	Method	Study	Patients	Goal	Results			
Clinical outcomes								
Kullar et al 2011	Population nomogram ≈ Kullar nomogram	Prospective Multicenter	200 adults All treated Intermittent	Through concentration 15 – 20 mg/L reached at steady state (%)	 15-20 mg/L = 58% initial 13-22 mg/L = 80% initial 			

Dosing methods

Population

- Advantages
 - Easy to interpret
 - No pharmacokinetic knowledge required
 - Limited use of resources
- Disadvantages
 - Parameters must remain stable
 - Rarely for critically ill patients
 - Rely on clinicians' experience for interpretation

Dosing methods

Linear regression

• *A posteriori* drug dosing methods

1-compartment pharmacokinetic model

<u>Sawchuk-Zaske formulas</u>

I. Calculation of PK parameters

$$t_{1/2} = \frac{\ln(2)}{k_e}$$
$$Vd = \frac{K}{k_e} \times \frac{(1 - e^{-k_e \times t_{inf}})}{(C_{max} - C_0 \times e^{-k_e \times t_{inf}})}$$
$$CL = Vd \times k_e$$

 $\begin{array}{l} t_{1/2} = Elimination half-life (h) \\ K_e = Elimination rate constant (h^{-1}) \\ Vd = Volume of distribution (L) \\ K = Infusion rate (mg/h) \\ T_{inf} = infusion duration (h) \\ C_{max} = Maximal concentration extrapolated at the end of infusion (mg/L) \\ C_0 = Minimal concentration obtained from the previous dosage regimen (mg/L) \\ CL = Total boday clearance (L/h) \\ \end{array}$

$$\tau = \frac{-1}{k_{e}} \times \ln \left(\frac{C_{\text{min target}}}{C_{\text{max target}}} \right) + t_{\text{inf}}$$

$$Dose = t_{inf} \times C_{max target} \times Vd \times k_e \times \frac{(1 - e^{-k_e \times \tau})}{(1 - e^{-k_e \times t_{inf}})}$$

 $\begin{aligned} \tau &= \text{Interval of administration (h)} \\ C_{\text{min target}} &= \text{Target minimal concentration (mg/L)} \\ C_{\text{max target}} &= \text{Target maximal concentration (mg/L)} \\ \text{Dose is expressed in mg} \end{aligned}$

3. Calculation of predicted peak and through concentrations corresponding to the calculated dosage regimen

$$C_{\text{max}} = \frac{K_{\text{desired}}}{Vd \times K_e} \times \frac{(1 - e^{-k_e \times t_{\text{inf}}})}{(1 - e^{-k_e \times \tau_{\text{desired}}})}$$

 $C_{min} = C_{max} \times e^{-k_e \times (\tau_{desired} - t_{inf})}$

 K_{desired} and τ_{desired} = Desired infusion rate (mg/h) and interval of administration (h)

Examples

• Pharmonitor

16

Vancomycin-calculator.com

Vancomycin Initial Dosing

Dose Adjustments by Trough

Examples

Dosing methods

Linear regression

- Advantages
 - Easy to interpret
 - Relatively simple calculations
- Disadvantages
 - Discard data outside of single dosing intervals
 - Cannot account for changing renal function
 - Accurate details of drug dosing are required

Dosing methods

Bayesian estimation

- Incorporates population + pharmacokinetic model (a *priori* with *α posteriori*)
- Based on 1 or 2 serum concentrations
- Includes analysis of sequential serum data, changes in pharmacokinetic parameters, and the experimental error

http://doseme.com.au

Examples

Dosing methods

Bayesian estimation

- Advantages
 - Incorporate all available patient data
 - Single-serum concentrations possible
 - Calculate appropriate starting dose
- Disadvantages
 - Requires pharmacokinetic knowledge
 - Patient parameters cumbersome to gather
 - Easy and accurate software under development

3.

How are guidelines and recommendations on vancomycinTDM implemented in Leuven and Belgium? Is there truly a need for software-driven approaches?

Leuven

Methods

- Retrospective study from 1 to 31 November 2016
- All patients started on vancomycin therapy with TDM
- Queries of the KWS and LWS electronic health systems
- No patients were excluded from the study

Leuven

TDM

✓ Adults with normal renal function: 2x1 g IV

✓ Children: 4x40 mg/kg IV or 4x60 mg/kg IV (meningitis)

✓ TDM sampling: Before administration of the 4th dose (steady-state).

✓ TDM measurements on HITACHI/Roche COBAS c702

Intibiotics

Leuven

Intermittent

- Reference: ± 15 mg/L through
- 195 patients with 989 serum samples
 - Median samples/patient = 3 (range 1-30)
 - Median (IQR) through = 14,60 (11,70-17,46) mg/L
- 15-20 mg/L was never reached in 38,97% of patients

Leuven

Dose suggestions

- Provided for 458/1046 (43.8%) TDM samples
- No specific calculators or software packages
- Dose adapted in next 48 hours?
 - Dose adjustments based on clinical judgment: 53.8%
 - Dose suggestion by laboratory followed: 32.6%
 - Vancomycin stopped after TDM: 13.6%

Electronic Google Docs survey

- Send to 46 different Belgian laboratories
- Response rate: 30 participants from 30 laboratories (65%)

Belgium

Methods

Belgium TDM

		Laboratories	
		n = 30	
TDM	performed by laboratory	28	
_	Through only	11	
_	Peak and through	16	
_	Continuous infusion separately	8	
Refer	rence values		
_	Through reference values	21	
	 Sanford edition 2010⁵ 	5	
	 Rybak et al. 2009⁴ 	11	
_	Peak reference values	9	
_	Continuous reference values	21	
	 Sanford edition 2010⁵ 	3	
	– 20-30 mg/L	11	
Dose	suggestions proposed		
-	Yes	18	
	– Manual	16	
	 Software-based in the past 	3	Pharmonitor I
	 Software-based currently 	2	
_	No	4	
-	When asked by clinician	3	
_	In collaboration with other departments (e.g. hospital pharmacy)	5	
Dose 	20 30 mg/L e suggestions proposed Yes — Manual — Software-based in the past — Software-based currently No When asked by clinician In collaboration with other departments (e.g. hospital pharmacy)	18 16 3 2 4 3 5	→ Pharmonit

• Pharmonitor

29

Belgium

Software

- Three laboratories stopped using Pharmonitor?
 - Malfunctioning software (1x)
 - Switch from intermittent to continuous infusion (1x)
 - Switch to an Excel based formula (validated using Pharmonitor) (1x)
- Experiences with Pharmonitor (5 labs)
 - Advantages
 - Quality of reports
 - User-friendliness
 - Validation in literature
 - Disadvantages
 - Need 2 concentrations in the same dosing interval
 - Difficulties in LIS implementation
 - Performance is dependent on provided sample information

Belgium

Software

- Interest for future implementation (n = 16)?
 - Used in the past: 3 labs
 - No : 4 labs
 - Yes: 9 labs!
- Advantages?
 - Objectivity
 - Standardization
 - Time- and cost-benefit

Conclusion

Clinical bottom line

Conclusion

- Vancomycin TDM is recommended in selected patient groups
 - Higher rates of clinical efficacy and decreased nephrotoxicity
 - Pharmacokinetic dose calculators could be useful
- Enormous lack of prospective and cost-effectiveness studies
 - Bayesian methods have the largest potential
- Interest?
 - Leuven
 - Low adherence to laboratory dose suggestions
 - Significant percentage of patient never reaches 15 mg/L through
 - Belgium
 - 5/18 labs had (previous) experience with software tools
 - 9/16 participants: software packages could lead to a significant increase in objectivity, standardization, and time-efficiency.
- Urgent need for user-friendly, cost-effective, LIS-integrated, and validated software solutions !

To Do

- Discuss results of dose suggestion adherence with the UZ Leuven clinicians
- Investigate possible confounding factors in reaching steady-state through levels
- Discuss whether implementation of a software tool is advised at UZ Leuven

Questions?

Thank you!

Vancomycin

- Pharmacokinetics
 - A. Oral absorption is very limited. IV administration with infusion time $\geq 1h$.
 - D. Poor tissue distribution ($V_D = 0,4 1 L/kg$) Protein binding ranges from 10-50%.
 - M. No significant hepatic metabolism
 - E. Mostly by glomerular filtration (> 80-90% unchanged).Half-life of 6-12 hours with normal renal function.

Dosing

• Initial intermittent doses: ABW and renal function

Regimen	≥ 90	89 - 60	59 - 30	29 -15	< 15	CRRT	CAPD
CI	30 mg/kg	30 mg/kg	20 mg/kg	15 mg/kg	15 mg/kg	20 mg/kg	15 mg/kg
	24h	24h	24h	24h	48h	24h	48h
П	15 mg/kg						
	q12h	q12h	q12-24h	q24-48h	q48-72h	q12-24h	q48-72h

- Adjustments based on vancomycin serum concentrations
- Loading dose of 25-30 mg/kg for critically ill patients
- Lower incidence of nephrotoxicity in patients receiving continuous infusion.
 - Loading dose: 20 mg/kg (1-2 hours)
 - Subsequent doses: 30 mg/kg/day

- Significant increase in vancomycin use since MRSA^o
- Vancomycin-intermediate S. aureus (VISA)
 - MIC = 4-8 mg/L
 - Heteroresistance (hVISA): MIC $\leq 1 \text{ mg/L}$
 - Thickened cell walls, reduced autolysis, reduced virulence
 - Suboptimal, prolonged, or repeated vancomycin therapy
- Vancomycin-resistant *S. aureus* (VRSA)
 - MIC ≥ 16 mg/L
 - Transfer of *vanA* transposon from VRE strains
 - No significant spread high fitness cost

Resistance

• Is TDM combined with clinical dosing software useful?

- Changes in pharmacokinetic function during critical illness
- In specific patient populations (e.g. pediatric, obesity)

Rationale

Pea nomogram

- Based on Cl_{CR} estimates
- Continuous infusion
- Critically ill adult patients
- Target through: 15 mg/L or 20 mg/L

Examples

Benchmark

- Most recent software benchmark in 2013
- Literature search: 12 software tools
- All programs were scored on a standardized grid
 - Pharmacokinetic relevance
 - User friendliness
 - Computing aspects
 - Interfacing
 - Storage
- Weighing factor for relative importance of each criterion

	MM- USCPack	Mw- Pharm	TCIworks	JKPD	TDM for R	Antibiotic Kinetics	АРК	Kinetics	Kinetidex	TDMS 2000	Data Kinetics	RAD kinetics
General characteristics	•			•				•	•			•
User interface	10	4	7	6	11	3	1	2	5	9	8	12
Interfacing	5	1	5	5	5	2	2	2	5	5	5	5
Storage	7	1	8	10	10	10	2	2	5	6	4	9
Report	10	1	7	8	12	9	2	2	6	6	4	10
Cost	4	8	3	6	6	5	1	1	12	8	10	11
Computational	3	4	1	2	10	5	5	5	11	9	5	12
Total	10	3	4	9	11	7	1	2	6	8	5	12
Pharmacokinetic aspects												
Populations	7	1	6	2	11	9	3	8	5	4	10	12
Models	1	3	2	9	10	8	7	6	4	5	11	12
Modularity	7	8	1	1	11	4	4	4	3	9	11	10
Plot	1	3	2	10	11	6	6	6	3	3	6	11
Various	9	2	7	11	11	5	5	8	4	3	1	11
Total	2	1	3	9	11	8	6	7	4	5	10	12
Authors				-					-			
Expertise	1	1	3	9	9	6	6	6	12	5	4	9
Global score	5	1	2	10	11	8	3	4	7	6	9	12
Software				-					-			
Bayesian analysis	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No
Starting dose	Yes	Yes	Yes	No	No	Yes	Yes	No	No	Yes	No	No
Cost	595\$	1530\$	Free	Free	Free	125\$	150\$	250\$	1520\$	600\$	900\$	100\$
Still available	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Website	lapk.org/ software	mediware. cz	tciworks. info	pkpd.kmu.ed u.tw/jpkd	pkpd.kmu.ed u.tw/tdm	Rxkinetics.com		truvenhealth .com	tdms2000. com	-	Showcase.ne tins.net/web /radman	

- Best two programs: MwPharm and TCIWorks
- Others: Less sophisticated or user friendly
- Programs vary in complexity and might not fit in all • healthcare settings
- Most software not available or supported anymore ! •

TCIWorks

http://www.mediware.cz

http://www.tciworks.info

Benchmark

ME, MAE and RMSE (reported by Sheiner and Beal) $ME = 1/n \sum_{i=1}^{n} (C_{pred} - C_{meas})$ $MAE = 1/n \sum_{i=1}^{n} |C_{pred} - C_{meas})|$ $RMSE = \sqrt{1/n \sum_{i=1}^{n} (C_{pred} - C_{meas})^2}$

- Prediction of serum concentrations (n = 8 studies)
 - Correlation observed and predicted through: r > 0.80
 - The mean prediction error (ME)
 - Measure of bias
 - ME = o mg/L in 2/3 studies that provided 95% CI intervals
 - ME < 1.0 mg/L in all other studies reporting ME values
 - ME values mostly <o mg/L

Predictive performance

	Method	Study	Patients	Goal	Results
Predictive performa	nce				
Pea et al 2009	Population nomogram ≈ Pea nomogram	Prospective Monocenter	63 adults Critically ill Continuous	Correlation between observed and predicted C_{ss} ?	r = 0.80 (p < 0.001)
Nunn et al 2011	Bayesian estimation ≈ USC*PACK*	Prospective	All treated Non-ICU Intermittent	Comparison predicted vs. observed C _{min}	ME = -0.11 mg/L (IQR: not given) MAE = 2.8 mg/L (IQR: 1.41, 4.75)
Hiraki et al 2010	Bayesian estimation ≈ VCM-TDM version 2*	Retrospective	22 adults Stable renal Intermittent	Comparison predicted vs. observed C _{min}	ME = -0.81 μg/ml [-0.96, -0.67] MAE = 1.38 μg/ml [1.28, 1.49]
Hurst et al 1990	Bayesian estimation ≈ USC*PACK*	Retrospective	27 adults Unstable renal Intermittent	Comparison predicted vs. observed C _{min}	ME = -0.7 ± 5.3 μg/ml MAE = 3.6 ± 4.5 μg/ml
Leal et al 1991	Linear regression ≈ Pharmonitor	Prospective	52 (> 1 year) Stable renal Intermittent	Comparison predicted vs. observed C _{min} after adjustment	y = 1.05 (± 0.04) x + 0.78 (± 3.3)
Llopis-Salvia et al 2006	Bayesian estimation ≈ Abbot PKS system*	Retrospective	20 adults Critically ill Intermittent	Comparison predicted vs. observed C _{min}	ME = -0.22 mg/L [-2.83, 2.39] MAE = 3.87 mg/L [2.58, 5.16]
Andrés et al 1997	Bayesian estimation ≈ Abbot PKS system*	Retrospective	79 adults Intermittent	Comparison predicted vs. observed C _{ss}	ME = -0.54 ± 2.44 [-1.10, 0.02] MAE = 1.74 ± 1.79 [1.33, 2.15]
Rodvold et al 1994	Bayesian estimation ≈ Abbot PKS system*	Retrospective	27 adults Stable renal Intermittent	Comparison predicted vs. observed C _{min}	ME = 0.92 ± 6.41 mg/L MAE = 5.37 ± 3.46 μg/ml

	Method	Study	Patients	Goal	Results	
Clinical outcomes						
Kullar et al 2011	Population nomogram ≈ Kullar nomogram	Prospective Multicenter	200 adults All treated Intermittent	Through concentration 15 – 20 mg/L reached at steady state (%)	– 15-20 mg/l – 13-22 mg/l	L = 58% initial L = 80% initial
					Bayesian	Nomogram
	 A. Bayesian estimation ≈ Abbot PKS system* B. Population nomogram ≈ Moellering's nomogram 	Randomized Prospective Multicenter	2 x 16 adults ICU Intermittent	Mean C _{max} 20-40 µg/ml (%)	50 %	50 %
Pea et al 2002				Mean C _{min} 5-10 μg/ml (%)	100%	43,75%

• Reference: ± 15 mg/L through

- 195 patients with 989 serum samples
 - Median samples/patient = 3 (range 1-30)
 - Median (IQR) through = 14,60 (11,70-17,46) mg/L
- Frequency distribution
 - 13-17 mg/L = 44,62%
 - 15-20 mg/L = 37.95% Rybak et al. *Clin Infect Dis.* 2009
- 15-20 mg/L was never reached in 38,97% of patients

Leuven

Intermittent

Reference = 15-25 mg/L

- 19 patients with 57 serum samples
 - Median: 2 (range 1-17 samples/patient)
 - Median (IQR): 19,8 (15,6-23,4) mg/L
 - Erroneous test requests could not be excluded!
- Frequency distribution
 - 15-25 mg/L = 63.16%
 - 13-27 mg/L = 68.42%

• 15-25 mg/L was never reached in 31,75% patients

Leuven

Continuous

Belgium

TDM

	Laboratories
	n = 30
TDM performed by laboratory	28
 Through only 	11
 Peak and through 	16
 Continuous infusion separately 	8
Reference values	
 Through reference values 	21
 Sanford edition 2010⁵ 	5
 Rybak et al. 2009⁴ 	11
 Peak reference values 	9
 Continuous reference values 	21
 Sanford edition 2010⁵ 	3
– 20-30 mg/L	11
Dose suggestions proposed	-
– Yes	18
– Manual	16
 Software-based in the past 	3
 Software-based currently 	2
– No	4
 When asked by clinician 	3
 In collaboration with other departments (e.g. hospital pharmacy) 	5

15-25 mg/L uncomplicated 25-35 mg/L complicated

10-15 mg/L uncomplicated 15-20 mg/L complicated

Belgium

TDM

	Laboratories
	n = 30
TDM performed by laboratory	28
 Through only 	11
 Peak and through 	16
 Continuous infusion separately 	8
Reference values	•
 Through reference values 	21
 Sanford edition 2010⁵ 	5
 Rybak et al. 2009⁴ 	11
 Peak reference values 	9
 Continuous reference values 	21
 Sanford edition 2010⁵ 	3
– 20-30 mg/L	11
Dose suggestions proposed	
– Yes	18
– Manual	16
 Software-based in the past 	3
 Software-based currently 	2
– No	4
 When asked by clinician 	3
 In collaboration with other 	_
departments (e.g. hospital pharmacy)	5

20-25 mg/L uncomplicated 25-35 mg/L complicated

-