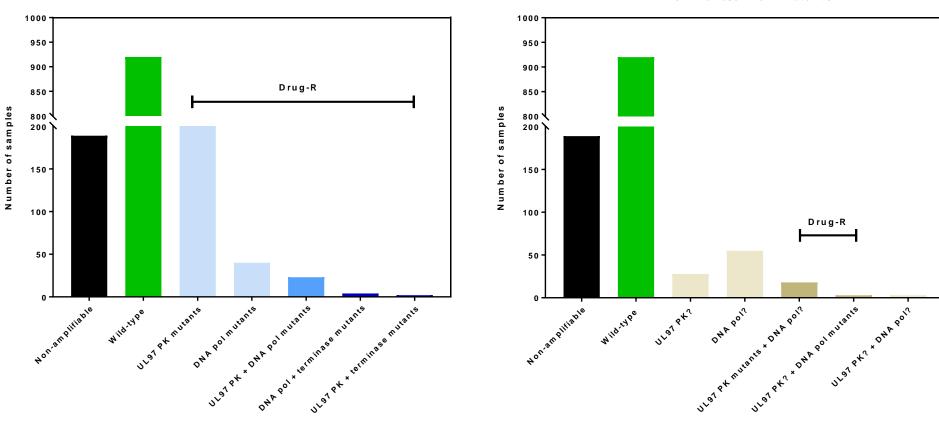


RegaVir platform: Case discussions antiviral resistance testing

Robert Snoeck & Graciela Andrei

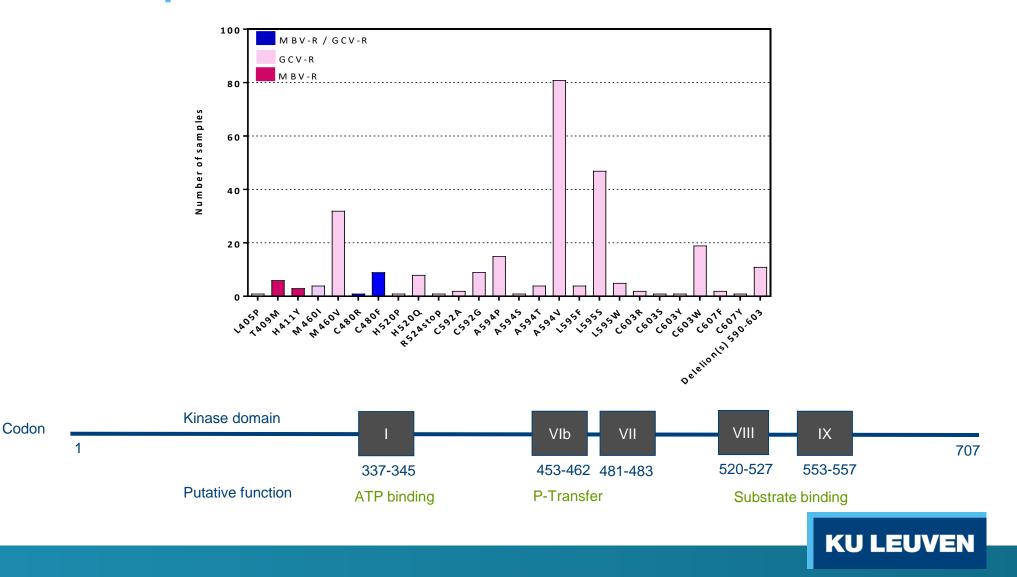
Leuven, June 28, 2022

Drug-resistance among herpesviruses

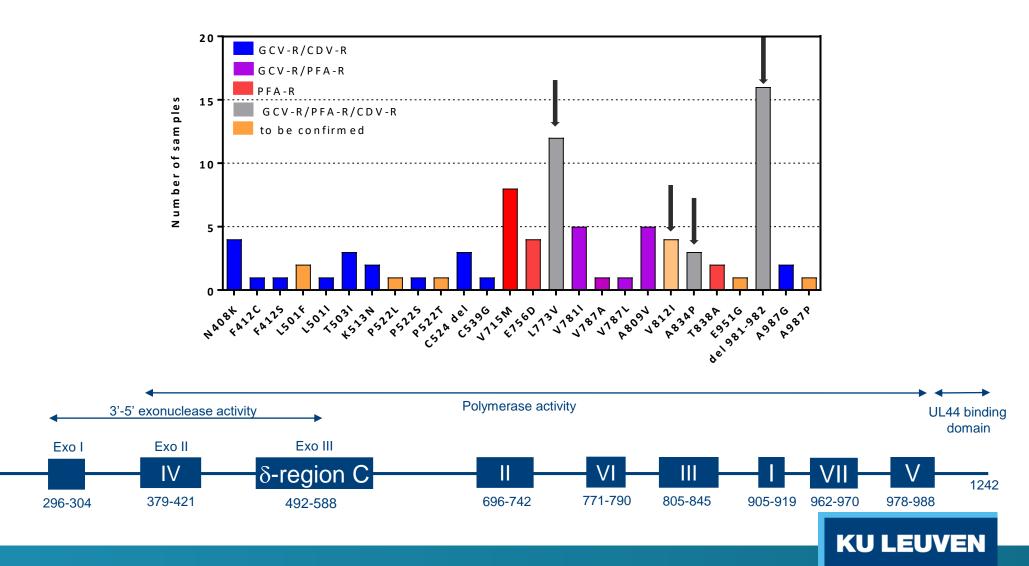

- Virtually not observed in immunocompetent individuals
- Well-recognized problem among ≠ populations of immunocompromised patients

Analysis

- Emergence of (multi)-drug resistance
- ✓ Dynamics and compartmentalization → evaluation of multiple samples
 - ≠ body sites≠ time points


Analysis of HCMV samples from patients that fail antiviral therapy

Mutants with known mutations



Known and/or new mutants

Frequency of drug-resistance mutations identified in the UL97 protein kinase

Frequency of drug-resistance mutations identified in the DNA polymerase

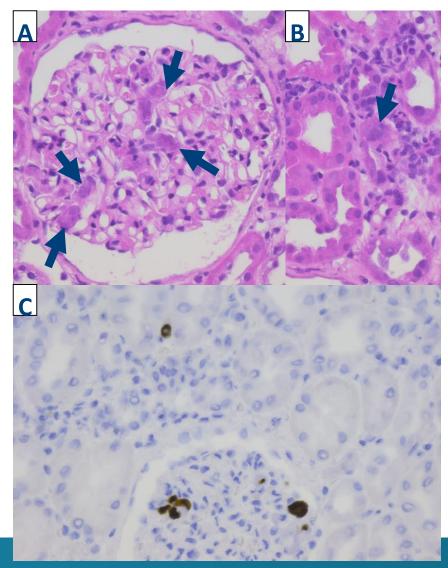
Emergence of HCMV multi-drug-resistance

- Confered by single mutations associated with resistance to ≠ antivirals
 - **HCMV DNA pol: del 981-982**
 - Pediatric HSCT patient
 - Renal transplant recipient (D⁺/R⁻)
 - Lung transplant recipient with primary HCMV infection
 - HCMV DNA pol: A834P
 - Pediatric HSCT patient
 - Adult HSCT patient
 - HCMV DNA pol: V812I
 - HIV seropositive / HSCT patient
 - HCMV DNA pol: L773V
 - Adult HSCT patient
 - Pediatric HSCT patient
 - Adult patient with neuroblastome stage IV
- Confered by co-infection with *≠* strains bearing specific mutations
 - Lung transplant recipient
 - Kidney transplant recipient undergoing transplectomy

- A 43-year-old female patient (CMV-seronegative) with end-stage renal failure due to obstructive renal disease received a kidney transplant from a 36-year-old CMV-seropositive deceased donor (with CMV IgM and IgG positive).
- The immunosuppressive regimen consisted of tacrolimus, mycophenolate mofetil, corticosteroids and induction with basiliximab.
- Valganciclovir for CMV prophylaxis was initiated on day 5 posttransplantation at 450 mg 1x/day.

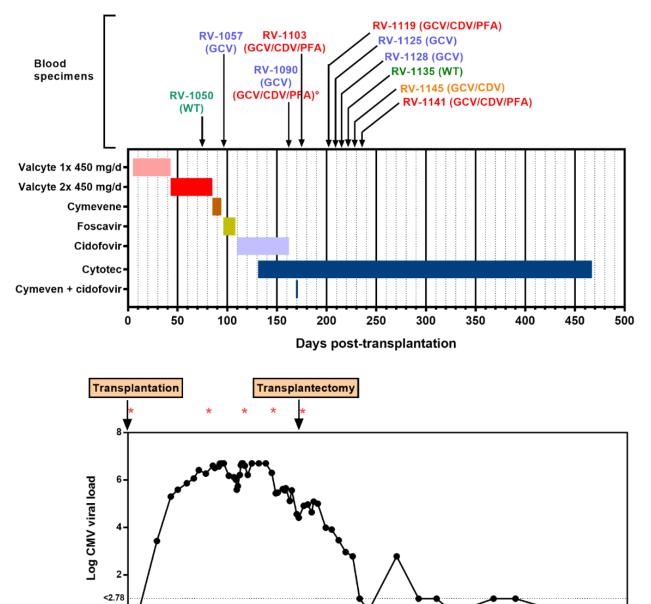
KU LE

- One week after transplantation, CMV PCR was negative in blood and the patient had excellent kidney function.
- Day 29 post-transplantation: CMV PCR became positive.
- CMV viral load increased, and she developed epigastric pain and diarrhea without fever.
- Day 43 post-transplantation: the dose of valganciclovir was then augmented to 2 × 450 mg/d. Epigastric pain disappeared but diarrhea persisted.


KU LEU

- The viral load rose despite the increased valganciclovir dosing.
- Day 67 post-transplantation, a blood sample (RV-1050) was evaluated for drug-resistance, and it can be considered as a baseline viral genotype (wild-type).
- Day 71 post-transplantation, she was hospitalized for mild liver dysfunction, anorexia, and **acute renal functional deterioration** that partly recovered.
- The CMV viral load increased to 6.4 log copies/mL. Because RV-1050 presented a wild type CMV genotype, valganciclovir was continued at a dosage of 2 × 450 mg/day.

KU LEU


- Day 109: kidney allograft biopsy for graft dysfunction showed clear T-cell mediated rejection with tubulitis grade 2 and interstitial inflammation grade 3.
- Anti-rejection treatment with high dose corticosteroids was started.
- The kidney biopsy (CS_3_3) showed renal tubular epithelial cells with nuclear inclusions that stained positive for CMV confirming the diagnosis of CMV nephropathy

The kidney biopsy showed several glomerular (A) and tubular (B) cells with enlarged nuclei, containing inclusions (arrows). These showed immune reactivity for CMV (C), confirming the diagnosis of CMV nephropathy.

- Day 109: Retrospective genotyping by Sanger sequencing indicated:
 - a mix of wild type and A594V UL97 mutant in the **kidney biopsy** (CS_3_3)
 - heterogeneous populations of UL97 A594V and C592G mutants in the **blood** (CS_3_8)
 - \rightarrow Compartmentalization

Overview of CMV-DNA PCR in relation to time after kidney transplantation.

Anti-CMV therapy and samples were genotypically analyzed prospectively (by Sanger sequencing) or retrospectively (by NGS). Abbreviations: WT: wild-type, GCV: ganciclovir, CDV: cidofovir, PFA: foscarnet.

Between brackets are indicated the drugs against which resistance was determined following conventional CMV genotyping. °Indicates resistance as determined retrospectively by NGS differing from Sanger sequencing.

KU LEUVEN

*Transplant biopsy performed.

Cytotec: CMV Ig.

Andrei et at, Antiviral Research 2019

100

150

200

250

Days post-transplantation

300

350

400

450

500

LOD

0

50

	Blood sample	Days post- transplantation	Date	Sanger sequencing	
	RV-1050	67	11/08/2016	wild-type	
	RV-1057	88	01/09/2016	UL54: wild -type UL97: C592G mixed	
	RV-1090	152	04/11/2016	UL54: wild -type UL97: A594V mixed	
Graft loss ↓immunosuppression	RV-1103	165	17/11/2016	UL54: del 981-982 mixed UL97: A594V mixed	
Stop antiviral therapy	RV-1119	192	14/12/2016	UL54: del 981-982 mixed UL97: A594V mixed	1
ala	RV-1125	198	20/12/2016	UL54: wild -type UL97: A594V mixed	'
	RV-1128	204	26/12/2016	UL54: wild -type UL97: A594V mixed	
	RV-1135	211	02/01/2017	UL54: wild-type UL97: wild-type	
	RV-1145	218	09/01/2017	UL54: P522T UL97: A594V	
	RV-1141	1141	16/01/2017	UL54: del 981-982 mixed UL97: A594V mixed	

DNA pol del. 981-982 associated with multi-drugresistance

		CMV nple ID DNA (log)	Specimen type	Analysis performed	Amino acid changes related to resistance in:		Amino acid changes related to natural genetic polymorphisms in:		Resistance to:
Day PT	Sample ID				UL97 (protein kinase)	UL54 (DNA polymerase)	UL97 (protein kinase)	UL54 (DNA polymerase)	
0	CS_3_1 (B-1825736)	NA***	Transplant kidney biopsy	Retrospective (Sanger)	Not amplifiable	_	Not amplifiable		/
67	RV-1050	6.07	Blood	Prospective (Sanger) Retrospective (NGS)	None	None	None	S897L S897L	Wild-type Wild-type
87	CS_3_2 (B-1836685)	NA	Kidney transplant protocol biopsy	Retrospective (Sanger)	None	None	None	S897L	Wild-type
88	RV-1057	6.51	Blood	Prospective (Sanger) Retrospective (NGS)	C592G* C592G (10.97) ^a	None None	None None	S897L S897L (99.60)	GCV GCV
109	CS_3_3 (B-1839887)	NA	Kidney biopsy for graft dysfunction	Retrospective (Sanger)	A594V*	None	None	S897L	GCV
109	CS_3_8	NA	Blood	Retrospective (Sanger)	A594V* C592G*	None	None	S897L	GCV
				Prospective (Sanger)	A594V*	None	None	S897L	GCV
152 *Heterogeneous popula Percentage of subpopu					C592G (2.09) A594V (68.44)	T503A (1.59) P522S (1.73)	None	s <mark>897L (99.72) KU LE</mark>	gcv, cdv, pfa UVEN
^a Percentage of subpopu NA: not available.	llation variants deteo	ted by de	ep sequencing (Illu	nina platform).		<mark>∆ 981-982 (3.03)</mark>			

		СМV			Amino acid changes related to		Amino acid changes related to		Resistance to:
					resistance in:	resistance in:		natural genetic polymorphisms in:	
Day PT	Sample ID	DNA	Specimen type	Analysis performed	UL97 (protein	UL54 (DNA	UL97 (protein	UL54 (DNA	
		(log)			kinase)	polymerase)	kinase)	polymerase)	
157	CS_3_4 (B-1846802)	NA	Kidney biopsy for graft dysfunction	Retrospective (Sanger)	Not amplifiable		Not amplifiable		/
158	CS_3_9	NA	Blood	Retrospective (Sanger)	A594V*	None	None	S897L	GCV
				Prospective (Sanger)	A594V*	Δ 981-982*	None	\$897L	GCV, CDV, PFA
165	RV-1103	5.56	Blood	Retrospective (NGS)	A594V (22.86)	P522S (1.27) Δ 981-982 (37.37)	None	S897L (99.87)	GCV, CDV, PFA
165	CS_3_7 (B-1847724-01-03)	NA	Transplantectomy kidney biopsy	Retrospective (Sanger)	A594V*	T503A*	None	5897L	GCV, CDV
192	RV-1119	5.0	blood	Prospective (Sanger)	A594V*	Δ 981-982*	None	S897L	GCV, CDV, PFA
198	RV-1125	3.99	blood	Prospective (Sanger)	A594V*	None	None	S897L	GCV
204	RV-1128	3.91	blood	Prospective (Sanger)	A594V*	None	None	S897L	GCV
211	RV-1135	3.46	blood	Prospective (Sanger)	None	None	None	S897L	Wild-type
218	RV-1145	2.96	blood	Prospective (Sanger)	A594V	P522S*	None	S897L	GCV, CDV
[*] Heterogeneous popula 225 Percentage of subpopu	ation of mutant and v RV-1141 Lation variants detec	vild-type 2.78 ted by de	virus detected by Sa blood ep sequencing (Illur	nger sequencing. Prospective (Sanger) nina platform).	A594V*	Δ 981-982	None	\$897L	GCV, CDV, PFA
NA: not available.			-					KU LE	

This case report is important in several aspects

- Importance of drug-resistance monitoring over time for tailored antiviral therapy.
- The case is marked by the rapid evolution of drug-resistant CMV mutants related to persistently high blood viral loads.
- Next to the direct consequences of CMV infection also indirect consequences are present in this case report, as the patient developed acute graft rejection.
- Transient and incomplete response to various anti-CMV treatments.

This case report is important in several aspects

- **Compartmentalization**: dissimilar CMV viral populations in different body compartments.
- Increased ability of certain viral mutants to replicate in the graft.
- By using NGS, the limitations of Sanger sequencing to detect minor viral subpopulation are put forward.
- Careful molecular diagnostics in our patient allowed optimal treatment options and support in the difficult but eventually live-saving decision to perform transplantectomy.

KU LEU

Risk of acute allograft rejection

- CMV increases the risk of acute allograft rejection and interstitial fibrosis with tubular atrophy in the kidney graft by inducing an excessive immune reaction due to upregulation of cell adhesion molecules, increased expression of human leukocyte antigens and activation of cytotoxic T cells (*Opelz and Dohler, 2015; Reischig et al., 2006*).
- The risk of CMV infection is highly dependent on the donor and recipient serological status.
- Besides the donor/recipient serological status, short prophylaxis duration and higher levels of immunosuppressive therapy are risk factors for developing CMV disease (Hasegawa et al., 2017).
 - \rightarrow Universal prophylaxis

Universal prophylaxis

- Administration of antivirals to all patients at high risk for CMV, i.e. D+, R- is recommended in the early post-transplantation period up to 6 months to increase graft survival in patients lacking CMV-specific immunity (Komorowska-Jagielska et al., 2018; Kuo et al., 2010).
- Valganciclovir is currently the most commonly used drug for CMV prophylaxis because of its improved bioavailability relative to ganciclovir (Kotton et al., 2018).
- The usual dose of valganciclovir for prophylaxis is 900 mg daily versus treatment dose (900 mg twice daily), although this needs to be adjusted for the variable kidney function, as was done in the case of our patient.
- Valganciclovir 450 mg daily is also effective for CMV prophylaxis and is associated with lower risk for hematological side effects than the high dose (Gabardi et al., 2015Halim et al., 2016; Heldenbrand et al., 2016; Stevens et al., 2015).

KUL

Universal prophylaxis

- According to a systematic review and meta-analysis, <u>valganciclovir 900 mg and 450 mg daily dosing are equipotent for CMV prophylaxis in all-risk renal transplant recipients</u> at least within the first year of transplantation with no differences regarding acute rejection, allograft loss, mortality, opportunistic infections, premature discontinuation of valganciclovir treatment and leukopenia (*Xin et al., 2017*).
- However, major concerns with the 450 mg daily dose are higher risk of ganciclovir resistance and breakthrough infection among CMV D+/R- kidney transplant recipients (Gabardi et al., 2015; Stevens et al., 2015).

Renal transplantation & risk for graft loss

- Renal transplant recipients with both early-onset (<3 months) and late-onset (>3 months) CMV DNAemia with ≥2000 copies/ml are at increased risk for graft loss (Reischig et al., 2017).
- In our case, persistent high viral replication in blood occurred despite implementation of a double valganciclovir dose and reduction of immunosuppression. Failure to achieve significant viral load reduction or persisting symptomatic disease beyond 2 weeks of antiviral therapy should be interpreted as an inadequate response.
- As these clinical features by themselves do not imply that viral drug-resistance is present, genotypic assays for viral drug-resistance mutations should be performed.
- Among SOT patients, the median duration of valganciclovir therapy prior to drug-resistance emergence is approximately 22 weeks (*Cherrier et al., 2018*) and foscarnet has been used successfully to manage CMV infections due to UL 97-resistant mutations in D+/R- transplant recipients (*Myhre et al., 2011*).

KU LE

Renal transplantation & risk for graft loss

• In our patient, foscarnet & cidofovir failure

- At day 157–158 post-transplantation: the UL97 mutant virus could be cleared from the allograft (CS_3_4) but not from the blood (CS_3_9) following cidofovir and foscarnet treatment and reduction of immunosuppressive treatment (A594V UL97 mutant was detected in the blood).
- High levels of CMV replication, unresponsive to different anti-CMV agents, CMV Ig and reduced immune suppression finally lead to the **emergence of a multidrug-resistant** circulating CMV infection and graft loss (day165 post-transplantation).

Renal transplantation & risk for graft loss

- Our patient was at risk for development of CMV drug-resistance with:
 - prolonged antiviral drug exposure
 - ongoing active replication
 - lack of prior CMV immunity
 - strong immune suppression
 - Potentially insufficient drug delivery (Kotton et al., 2018)
- Further, the lack of CMV specific immunity, which is known to play a critical role in the development and severity of CMV disease, could also be responsible for the failure to clear the virus before transplantectomy.
- Analysis of CMV-specific T-cell frequencies and function is being considered as a **potential biomarker** to predict the patient's ability to control CMV disease (*Egli et al., 2012*).

Primary CMV infection in SOT recipients

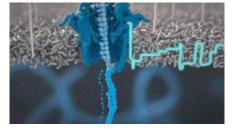
- In CMV-naive solid organ transplant recipients, primary CMV infection usually occurs following reactivation of the latent virus carried in the graft.
- In our patient, considering that, the donor had CMV IgM and IgG, indicative of a recent primary infection with a possibly on-going asymptomatic low viremia, the donor might have transmitted an active CMV infection to our patient.
- CMV transmission has been reported from a CMV IgM positive donor only a few days after trans-plantation (*Gangopadhyay et al., 2016*), similar to our patient (CMV PCR positive at day 29 post-transplantation).

Compartmentalization

- Our findings clearly indicate a compartmentalized evolution of the viral subpopulations as highlighted in our previous studies (Bache et al., 2014; Bauters et al., 2016)

 → warrants genotyping of tissue-specific specimens together with blood in patients unresponsive to antiviral therapy.
- *≠* viral mutants can be selected at relatively low amounts in blood where high levels of
 viral replication take place and some minor viral variants can invade the graft
 causing disease.

→ rapid detection by NGS of minor viral variants should be beneficial!


KU LEU

Compartmentalization

- C592G UL97, P522S DNA pol & Δ981–982 DNA pol mutants: unable to infect the graft
- A594V UL97 and DNA polymerase T503A mutants: able to infect the graft.
- Due to:
 - > Difference in tissue-specific virulence of the viral mutants
 - > Sampling or local drug concentration issue
 - Analyzing viral evolution of compartmentalized CMV subpopulations is limited by the practical difficulty of obtaining tissue-specific samples.
 - However, compartmentalized subpopulations should be sought in cases of CMV life-threatening disease when organ biopsy is performed for graft dysfunction.

Rapid detection of minor viral mutants

- Although NGS provides a more detailed diagnosis of viral mutant subpopulations, the few studies that have analyzed herpesvirus subpopulations by deep sequencing were done retrospectively because specimens are currently processed in batch (Chou, 2015; Chou et al., 2014; Garrigue et al., 2016).
- NGS is becoming more accessible but automation and streamlined processing of samples is still required for *ex tempore* diagnosis of viral drug-resistance to deliver results in a short time.
- Third generation sequencing could be an alternative (such as nanopore sequencing).

Multi-drug-resistance CMV infection & compartmentalization in a lung transplant with primary CMV infection

RegaVir code	Date	Type of sample	UL97 genotyping	UL54 genotyping
RV-1091	28/10/2016	blood	A594V	Wild-type
RV-1137	05/01/2017	blood	A594 V	Del 981-982*
RV-1179	09/03/2017	blood	A594 V	Del 981-982
RV-1206	18/04/2017	Eye fluid	A594 V	Wild-type

KU LEUVEN

*heterogeneous population

Multi-drug-resistance CMV infection in a pediatric HSCT recipient

RegaVir code	Date (blood sample)	Virus	Protein kinase genotyping	DNA polymerase genotyping
RV-933	30/12/2015	HHV-6	Wild-type	Wild-type
RV-934	04/01/2016	HHV-6	Wild-type	Wild-type
RV-935	11/01/2016	HHV-6	Wild-type	Wild-type
RV-936	18/01/2016	HHV-6	Wild-type	Wild-type
RV-975	21/03/2016	CMV	Wild-type	Wild-type
RV-1014	08/06/2016	CMV	A594T* L595W*	A834P
RV-1028	22/06/2016	CMV	A594T*	A834P

*heterogeneous population

Lung transplant recipient – CMV reactivation multi-drug-resistance CMV infection (co-infection with ≠ mutants)

RegaVir code	Date	Type of sample	UL97 genotyping	UL54 genotyping
RV-901	18/11/2015	blood	L595S	Wild-type
RV-924	01/01/2016	blood	L595S*	K513N (GCV ^R / CDV ^R)* V787L (GCV ^R / PFA ^R)*

*heterogeneous population

Multi-drug resistance confered by co-infection with <u>≠ strains</u> bearing specific mutations

Kidney transplant recipient – CMV reactivation multi-drug-resistance CMV infection (co-infection with ≠ mutants)

RegaVir code	Date	Type of sample	UL97 genotyping	UL54 genotyping	
RV-1861	23.09.19	Blood	L595S	wt	
RV-1891	24.10.19	Blood	L595S	wt	
RV-1904	05.11.19	Stomach biopsy	L595S	wt	
RV-1931	18.11.19	Kidney Biopsy	L595S	wt	
RV-1905	05.11.19	BAL	L595S* + del. KLTHC 599-603*	wt	
RV-1996	27.01.20	Blood	wt	N408K* (GCV-R/CDV-R) + E756D* (PFA-R)	
RV-2062	23.04.20	Blood	wt	N408K (GCV-R/CDV-R) + E756D (PFA-R)	UL
RV-2074	14.05.20	Blood	wt	N408K (GCV-R/CDV-R) + E756D (PFA-R)	UL

KU LEUVEN

*heterogeneous population

Multi-drug resistance confered by co-infection with <u>*≠* strains bearing</u> specific mutations

Emergence of multi-drug-resistance

Clinical challenge to manage multi-drug-resistance

KU

- Urgent need for new antiviral agents
- Investigational drugs for compassionate use?
- Drug repositioning (drug repurposing)?