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DE STROOMVERSNELLING 

In het matrix van genetica zweven ze rond 

De oplossingen tot het raadsel, wat een vondst! 

Op zoek naar de druppel 

Die een zee van antwoorden geven 

Tot nu nog door meerdere onbegrepen 

 

Als Sherlock van ouds, gewapend met meer dan een vergrootglas 

met data, pipet en microscoop; ook geduld komt handig te pas 

juist of fout, herhaaldelijk bewezen 

blijven denken en betwijfelen, blijven vragen en lezen 

Ineens wordt het duidelijk, nog eentje opgelost! 

Euforie! …en dan terug naar de volgende post 

 

Student en leermeester, een gans team erbij 

Wij zullen het vinden, zij-aan-zij 

Stroomop of in stroomversnelling, blijven gaan, wij zijn er bijna! 

 

En nu, plots, stopt mijn ‘officiële’ zoektocht… 

‘Neen’, klinkt de chorus in mijn hoofd: ‘Het is maar juist begonnen!’ 

         Jacoba J. Louw, 2017 
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SUMMARY 

 
The main aim of this thesis was to evaluate the application of a powerful genetic tool, Next 

Generation Sequencing, to contribute to the understanding of genetics in congenital heart defects 

(CHD) and congenital cardiomyopathies. We specifically used Whole Exome Sequencing (WES), 

which analyses the protein coding parts of the human genome, in two distinct clinical groups: 

sporadic syndromic cases and small families with two affected siblings.  

 

In the sporadic syndromic cases a de novo mutation was most likely and analysis was done by trio 

analysis (WES in the patient and both parents) and compared to index-only analysis (WES only in 

the patient). Here we could conclude that trio analysis outperforms index-only analysis as filtering 

was more efficient and resulted in a higher percentage of cases being solved (Chapter 3). We 

reported the first intragenic mutation in MEIS2 which further confirmed the important role of this 

gene in normal development (Chapter 3.1). 

In the families with two siblings sharing a similar phenotype, autosomal recessive inheritance was 

most likely. (Chapter 4). Linkage analysis was combined with WES and resulted in solving two 

families with a rare, neonatally lethal, cardiomyopathy. In the first family a homozygous mutation 

in a known gene (ALMS1) for Alström syndrome was found. The cardiomyopathy in this family 

represents the extreme end of the cardiac spectrum in this syndrome (Chapter 4.1). In the second 

family a compound heterozygous mutation was found in a gene (KIF20A) which has not been 

associated previously with human pathology. To prove the pathogenicity we performed 

additional functional tests, including animal studies in zebrafish which resulted in a progressive 

and lethal cardiomyopathy phenotype (Chapter 4.2). Discovery of these two genes open a new 

mechanism for future research in linking cardiomyopathies to genes involved in cytokinesis. 

 

Based on our experience as well as current available literature we formulated guidelines for 

genetic diagnosis in CHD for cardiologists and geneticists. Classifying CHD into four clinical groups 

based on familial and syndromic characteristics necessitates a different strategic approach. In the 

last chapter we also addressed the crucial economic aspects and limitations of WES (Chapter 5). 
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SAMENVATTING 

 
Het belangrijkste doel van dit proefschrift was om inzicht te verkrijgen in het genetisch landschap 

van aangeboren hartafwijkingen en congenitale cardiomyopathieën door de toepassing van een 

krachtige genetische tool, Next Generation Sequencing. Wij verrichtten analyse door Whole 

Exoom Sequencing (WES) - het eiwit coderende deel van het menselijk genoom - in twee 

afzonderlijke klinische groepen: sporadische syndromale patiënten en kleine families met 

minstens twee siblings met hetzelfde fenotype. 

 

In de sporadische syndromale patiënten was een de novo mutatie het meest waarschijnlijk en 

werd de analyse uitgevoerd door trio analyse (WES in de patiënt en beide ouders) en vergeleken 

met index-only analyse (WES alleen bij de patiënt). Hieruit concludeerden we dat trio analyse 

beter functioneert gezien de filtering efficiënter was en frequenter leidde tot het vinden van een 

causaal genotype (Hoofdstuk 3). We publiceerden de eerste intragene mutatie in MEIS2 die de 

cruciale rol van dit gen in normale ontwikkeling verder bevestigd (Hoofdstuk 3.1). 

In families met siblings met een vergelijkbaar fenotype, was een autosomaal recessieve 

overerving het meest waarschijnlijk (Hoofdstuk 4). Koppelingsanalyse werd met WES 

gecombineerd en leidde tot het vinden van een causaal genotype in twee families met een 

zeldzame, neonataal lethale, cardiomyopathie. In de eerste familie werd een homozygote 

mutatie in een bekend gen (ALMS1) voor Alström syndroom gevonden. De cardiomyopathie in 

deze familie past bij het uiterste spectrum van het cardiale fenotype van dit syndroom (Hoofdstuk 

4.1). In de tweede familie werd een samengesteld heterozygote mutatie in een gen (KIF20A) 

gerapporteerd dat nooit eerder werd geassocieerd met humane pathologie. Om het causale 

aspect verder te verifiëren werden bijkomende functionele studies uitgevoerd, inclusief een 

dierenmodel in zebravisjes die resulteerde in een progressieve lethale cardiomyopathie 

(Hoofdstuk 4.2). De ontdekking van deze twee genen opent een nieuw mechanisme voor 

toekomstig onderzoek door het koppeling van cardiomyopathieën aan mutaties in genen die 

betrokken zijn bij celdeling of mitose. 
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Wij hebben, gebaseerd op onze ervaring en de beschikbare literatuur, richtlijnen voor genetische 

diagnose bij aangeboren hartafwijkingen geformuleerd voor cardiologen en genetici. Op basis van 

syndromale en familiale gegevens onderscheiden we vier klinische groepen, die een andere 

strategie in genetisch diagnostiek voor CHD vereisen. Ten slotte werden de economische 

aspecten en beperkingen van WES die cruciaal zijn in het diagnostisch proces samengevat 

(Hoofdstuk 5). 
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CHAPTER 1  

GENERAL INTRODUCTION AND OBJECTIVES 
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INTRODUCTION 

Congenital heart defects (CHD) are structural anomalies of the heart arising from abnormal 

formation of the heart or major blood vessels. At least 18 distinct types of congenital heart defects 

are recognized, with many additional anatomic variations. The majority of CHD are structural 

defects and have an incidence of 7,5/100 live births, if trivial lesions such as small muscular 

ventricle septal defects are included, making it the most common birth defect [1]. Moderate to 

severe CHD with functional consequences occur in 6-8 out of 1000 live births (19/1,000 live births 

if the potentially serious bicuspid aortic valve is included) [1, 2]. These structural defects are the 

result of abnormal embryonic heart development and can be anatomically classified into 

abnormalities of the septa, the heart valves, and inflow or outflow tract of the heart. These 

structural defects most often have functional consequences, but of varying degree and 

significance. Some structural defects do not have important functional significance in early life 

such as the aortic valve with two leaflets, the prolapsing mitral valve, a small persistent patency 

of the arterial duct, small septal defects and patency of the oval foramen. This group might also 

include structural defects which resolve without ever becoming clinically manifest, such as small 

muscular ventricular septal defects and atrial septal defects or peripheral pulmonary stenosis. 

Consideration of these lesions is important because they are common, and might inflate a 

prevalence estimate. This is also influenced by the surveillance and likelihood of diagnosis which 

differs greatly in developed and developing countries. 

Cardiomyopathies (CM) are a different entity which are defined as primary myocardial disorders 

in which the heart muscle is structurally and functionally abnormal, in the absence of other causes 

such as CHD [3]. The annual incidence of pediatric cardiomyopathy is low, 3-6 per 1 million 

children, with the highest incidence in the first year of life [4, 5]. Four major types of CM are 

distinguished, i.e., hypertrophic, dilated, restrictive, and arrhythmogenic right ventricular 

cardiomyopathy (ARVC) [6], but there is considerable etiologic and phenotypic overlap. 

Previously, hypertrophic CM was described as a sarcomeric disease, with mutations encoding 

contractile proteins of the cardiac sarcomere, and pathogenic mutations have been detected in 

11 genes encoding for sarcomeric proteins. Most mutations, around 80% are detected in MYH7 
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(β-myosin heavy chain) and MYBPC3 (myosin-binding protein C) [7]. The other 9 genes account 

for far fewer cases of HCM and include troponin T and I, regulatory and essential myosin light 

chains, titin, α-tropomyosin, α-actin, α-myosin heavy chain, and muscle LIM protein. There is 

considerable intragenic heterogeneity, with >400 individual mutations which have been 

identified.  There is also considerable variable expressivity, even within families, which is most 

probably to the influence of modifier genes and environmental factors [7]. Pathogenic mutations 

have also been detected in HCM in genes encoding for Z-disk, sarcoplasmic reticulum and plasma 

membrane proteins. Interestingly, mutations in sarcomeric and Z-disk genes have also been 

identified in patients with DCM and RCM and desmosomal protein genes in DCM, RCM and ARVC 

[7]. 

Reaching an etiological diagnosis is important for counselling on recurrence risks for future 

siblings or offspring. When no exact cause can be identified, predictions on recurrence risk for 

additional children in the family or future offspring is mostly based on empirical risks, without 

knowledge of the true underlying genetic mechanism [8]. Whereas recurrence risks for congenital 

heart disease usually are low, a large number of individually rare genetic disorders exist that may 

carry a significant recurrence risk e.g. Noonan syndrome, Barth syndrome or 22q11.2 

microdeletion syndrome.  

Despite diagnostic and surgical advances, CHD remains a major cause of infant morbidity and 

mortality. Improved prenatal and neonatal diagnostics, as well as pediatric bypass surgery and 

percutaneous interventions prolong life expectancy. As more patients survive into adulthood, the 

burden of disease, and the requirements for resources, have also achieved greater importance. 

In addition, this has resulted in increased demand for genetic counselling of adults who have been 

treated for a CHD themselves, and reassessment of recurrence risk for CHD in offspring [9]. In 

infants and children, one of the major challenges is to predict the long-term prognosis, 

concomitant morbidities and societal impact. For instance, the prospects of patients diagnosed 

with a Tetralogy of Fallot (ToF) as an isolated cardiopathy or as part of a 22q11.2 microdeletion 

syndrome differ significantly. Not only do patients with a 22q11.2 microdeletion syndrome have 

a different life expectancy but they have a high incidence of intellectual disability (ID), psychiatric 
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manifestations and medical comorbidity, necessitating life-long surveillance [10-14]. Long-term 

prognosis is compromised especially in CHD with additional manifestations including ID. Detailed 

phenotyping and long-term follow-up of many different syndromes have led to clinical guidelines 

for optimized guidance and follow-up. For instance patients with Down syndrome need to be 

followed for concomitant hearing loss and thyroid disease [15, 16], children with Noonan 

syndrome often have short stature and Williams syndrome is associated with a characteristic 

behavioral phenotype.  

Over the past decades, a genetic revolution has taken place, which has largely been driven by 

technological advances. This has led to new insights in the function and structure of the human 

genome, and the identification of genes implicated a large number of genetic disorders.  This 

knowledge and technology has rapidly been translated into the clinic, to advance genetic 

diagnosis in individuals with congenital disorders, including certain categories of CHD. 
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GENETIC TOOLS 

The genetic tools available to study the structure and sequence of the human genome have 

changed considerably in the last 20 years. Traditionally, one distinguished cytogenetic versus 

molecular analyses, depending on whether one was studying the number and structure of 

chromosomes or individual genes, typically at the sequence level. However, with current 

technology, this distinction is often blurred.  

 

Cytogenetic techniques 

1. Karyotype 

This classical technique was introduced in 1955 to study the number and structure of 

chromosomes of a human eukaryotic cell. Over the years, the resolution has increased by 

chromosome banding techniques and prometaphase chromosome analysis. However, on 

average, the resolution of karyotyping is limited to fragments of 5-10 Megabases (Mb), containing 

on average 35-70 genes (Figure 2). A unique feature of karyotyping compared to other 

cytogenetic tools is that it permits the detection of balanced chromosomal anomalies, without 

associated loss of genetic material. Such balanced translocations may disrupt a gene and cause a 

congenital defect. As such, they present unique but rare opportunities to identify genes for 

specific disorders. Examples in the field of cardiogenetics include ELN and Supravalvular aortic 

stenosis [17], PROSIT240 and transposition of the great arteries [18] and the TAB2 gene and 

cardiac valve disorders [19].  
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Figure 2. Advances in genetic technology showing the differences in resolution and screening 

capacity for different tests in research and diagnostics. 

2. Fluorescence in situ hybridization  

Fluorescence in situ hybridization (FISH) is a cytogenetic technique developed in the early 1980s 

and used to detect and localize the presence or absence of specific DNA sequences.  Fluorescent 

probes are used which bind complementary sequences on the chromosome with a high degree 

of sequence complementarity. It is typically used to detect microdeletions, e.g22q11.2 

microdeletion syndrome or del7q11.2 (Williams syndrome). Moreover, an important advantage 

is the possibility to rapidly detect imbalances or aneuploidies in interphase nuclei, e.g. to confirm 

a suspected diagnosis of Down syndrome. Whereas FISH has a resolution at the single gene level, 

its application is typically limited to a few loci in one experiment. Therefore, FISH remains targeted 

at the detection of a suspected imbalance, based on clinical suspicion.   
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3. Microarray-based copy number variation (CNV) detection  

At the beginning of the 21st century, microarray analysis was introduced. It is a 

molecular technique used for detecting chromosomal copy number variations (CNV), a term used 

for small deletions (microdeletions) or duplications (microduplications). Two types of microarrays 

are used: oligonucleotide arrays for array comparative genomic hybridization (also called 

microarray-CGH, aCGH) and SNP-based microarrays. Microarrays combine the genome-wide 

screening capacity of karyotyping with the high resolution of FISH. It is now possible to detect 

small CNV’s including a single gene or even a few exons. This technology is currently used as a 

routine diagnostic test for patients with a developmental disorder including congenital 

malformations, dysmorphism and intellectual disability. Using array-CGH 15-20% of unknown 

syndromic cases are currently solved [20]. This technology has also been introduced in prenatal 

diagnosis of syndromic CHD’s in Belgium [21]. Microarray analysis additionally played a crucial 

role in the hunt for genes involved in CHD’s. Numerous genes have thus been identified, often 

through the identification of the smaller region of overlap in patients with similar phenotype, e.g. 

GATA4 on chromosome 8p23.1 [22], CHD7 in CHARGE syndrome [23] and NKX2.5 on chromosome 

5q35.1 [24]. 

 

4. MLPA 

MLPA (Multiplex Ligation-dependent Probe Amplification) is a multiplex PCR method that allows 

the quantitative detection of abnormal copy numbers for small regions (50-70 nt, typically exon 

level) of up to 50 different loci. It is known that for most monogenic disorders caused by loss-of-

function mutations, a small percentage of such mutations are small deletions or duplications (a 

single or a few exons) which typically escape detection by current sequencing techniques or by 

microarrays. Therefore MLPA is mostly used to complete gene sequencing to detect such small 

imbalances [25-27].  An example is the vast variety of mutations in the dystrophin gene (DMD) 

which lead to Duchenne and Becker muscular dystrophies. The dystrophin gene is the third largest 

human gene and spans 2.2 Mb and has 79 exons. Intragenic deletions account for 65% of 

mutations and duplications in 10%. The remaining 25% circa of DMD mutations are represented 

by small mutations, including point mutations (missense, nonsense), frameshifting, indels, and 
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other rare types (small inversion, complex small rearrangements, atypical deep intronic 

mutations) [26]. 

 

5. Sequencing technology 

Specific genes can be sequenced through Sanger sequencing, but this is laborious and costly to 

perform for multiple genes. More recently, next generation sequencing technology (NGS) was 

developed and allowed massive parallel sequencing. This made it possible to screen the coding 

parts (exons) of a large number of target genes (targeted panel) or of all genes (whole exome 

sequencing) in search of possible causative mutations.   

NGS has shifted the challenge from variant detection to variant interpretation: the new “bottle-

neck” is data analysis and interpretation. Sifting through the huge amount of data to find a 

pathogenic mutation in a known or novel gene is time consuming and strongly depends on 

existing knowledge. In addition, proof that a certain gene is a novel cause of a CHD may require 

lengthy functional studies, including animal models. This is not trivial, since the ultimate goal is 

translating this knowledge to the clinic, e.g. offering prenatal diagnosis. This has further led to 

indistinct borders between diagnostics and research. 

 

5.1. Next-Generation Sequencing Technologies 

Currently, we are witnessing a technological revolution of high-throughput massively parallel 

sequencing methods which allows us to determine the sequence of a large number of genes in 

one single analysis [28-30]. NGS technologies enable large-scale DNA sequencing, and have 

dramatically accelerated the genetic research and diagnostics, leading to a rapid increase in the 

delineation of novel genetic entities, as is shown in Figure 1 [31, 32].  

Many of the steps in NGS technology have been evolving rapidly, including sample preparation 

methods [33], sequencing machines and bioinformatics tools for NGS data processing, but this is 

beyond the scope of this introduction. 
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Figure 1. Growth in Number of Online Mendelian Inheritance in Man (OMIM) entries by Year. 

In the last two decades there has been a tremendous growth in the identification of genes for 

Mendelian disorders and identification of novel genetic disorders due to advances in genetic 

technology. Used with permission of Simon Sadedin (December 2015). 
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Depending on the number of genes resequenced, one can distinguish three different applications: 

(1) Sequence analysis of a predetermined set of candidate genes for a specific condition. For 

instance, panels of known genes causing CHD, CM, or arrhythmias. This is typically used as a 

diagnostic tool. In the Center for Human Genetics in Leuven, using targeted capture for 57 genes 

implicated in congenital heart defects, we have thus far identified potential causative mutations 

in 46% of analysed families with three or more affected individuals (n = 13 families) [24]. For more 

complex phenotypes (e.g. CHD associated with intellectual disability or multiple malformations) 

one can use a Mendeliome approach, a panel consisting of the approximately 6000 genes known 

to be involved in a genetic disorder.  

(2) Sequencing the coding sequences (exons) of all 20.000 human genes by Whole Exome 

Sequencing (WES). The exome encompasses around 1% of the human genome. WES have been 

used to identify point mutations, as well as small (<50 base pairs) insertions or deletions (indels) 

in exonic regions. WES is still essentially a research tool, but as mentioned previously, it is also 

being used in specific diagnostic settings.  

As a research tool, WES has achieved a major breakthrough in the identification of genes 

involved in developmental disorders, including CHD. Since the majority of severe sporadic CHD 

is caused by a de novo mutation, several researchers used WES in a trio (CHD proband-parent) 

analysis. This has resulted in the identification of several novel CHD genes [34-38]. Of interest, 

the genetic mechanism for many of these genes is not a loss-of-function but dominant negative 

or gain-of-function mutation which typically result from missense mutations, and affects crucial 

functional amino acid residues. Examples include Rasopathies [39-41] where simple dosage 

alterations as in the deletion or duplication of these genes do not result in the same phenotype, 

and therefore, previous genome-wide screening studies using CNV analysis failed to identify 

these genes as candidate genes for CHD.  

 (3) In Whole Genome Sequencing (WGS) the entire human genome (including the 99% not 

included by WES) is analysed, thus all coding and non-coding regions. WGS is still an emerging 

technology, partly due to the relatively high cost of sequencing, but mainly due to the 
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requirements of more sophisticated bioinformatics tools and computing infrastructure.  

 

GENETICS AND CLASSIFICATION OF CHD 

Gene identification for CHD still represents a major challenge, especially since the genetics of CHD 

is heterogeneous [42]. Not only can different genes be involved, also different inheritance 

patterns exist. From a clinical point of view, we can distinguish syndromic from non-syndromic 

forms depending on the presence of dysmorphism, additional major malformations and/or 

intellectual disability. A second characteristic is the familial history: sporadic or familial 

occurrence, and the pattern of inheritance.  These two characteristics allow us to define four 

different clinical categories of congenital cardiopathies (Figure 3): (A) sporadic syndromic CHD 

(22%) [43-45], (B) familial syndromic CHD (exceptional), (C) sporadic non-syndromic CHD (74%) 

and (D) familial non-syndromic CHD (4%). This distinction with regard to cardiopathies is a 

clinically useful lead to diagnosis, because each category requires a specific diagnostic approach 

but also with regard to further follow-up and guidance. Moreover, this distinction may aid 

directing the set-up of research towards the identification of novel genes.  

(A) Sporadic syndromic CHD  

This category mostly occurs as the result of a de novo mutation, either chromosomal (e.g. Down 

syndrome and deletion 1p36), or genomic disorders e.g. DiGeorge syndrome (22q11.2 

microdeletion syndrome) and Williams syndrome (del7q11.23) or monogenic such as Holt-Oram, 

Kabuki, Alagille and Noonan syndromes, chromosomal imbalances. 

(B) Familial syndromic CHD  

Autosomal dominant inheritance of a syndrome is only expected when the expression is 

compatible with survival and reproduction, which is rare. Affected siblings with normal parents is 

typically observed in autosomal recessive (e.g. Friedreich ataxia) or X-linked recessive inheritance 

(e.g. Barth syndrome).  
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(C) Sporadic, non-syndromic CHD 

This is the most commonly observed group, and is thought to have a multifactorial cause, i.e. the 

interaction of multiple genetic and environmental factors, each with a low risk. However, more 

recently, exome and copy number variation studies indicate that rare variants with a moderate 

effect are involved, at least in a small proportion of cases [46, 47].  

(D) Familial non-syndromic CHD 

Rarely, multiple affected individuals exist with recurrence of a same type of non-syndromic CHD. 

In most families, inheritance is autosomal dominant, and known genes include ELN, NKX2.5, 

GATA4, and NOTCH1. 

 

Figure 3. The genetics of CHD results in four different clinical categories: sporadic non-

syndromic (74%), sporadic syndromic (21%), familial non-syndromic (4%) and familial 

syndromic (exceptional <1%). 
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GENETIC STUDIES OF SYNDROMIC CHD AND CARDIOMYOPATHIES BY NGS 

In this study, we evaluated the use of NGS in the identification of the genetic cause in syndromic 

forms of CHD, both sporadic and familial. 

Sporadic syndromic cases with unknown cause 

Since the majority of known sporadic syndromes featuring a major malformation have a de novo 

AD cause, we hypothesized that also in those with an unknown cause, a de novo dominant 

mutation is present in a significant proportion. To identify causal mutations, exome sequencing 

using a trio approach (parents and child) was likely to be the most efficient way. Given the cost, 

we compared this to an index-only analysis.  

Familial syndromic congenital heart defects  

When two or more siblings in the same family have the same CHD, the most likely explanation is 

a multifactorial inheritance. However, certain very rare and specific (syndromic) phenotypes may 

have a monogenic cause, but no obvious candidate genes exist. This occurs when the combination 

of distinct anomalies observed in the siblings does not fit a known entity, and thus constitute a 

new syndrome. Alternatively, the cardiac phenotype is unique, e.g. an unclassified type of CM. In 

these families, the inheritance pattern is most likely autosomal recessive (AR) and sometimes X-

linked. Germline mosaicism in one parent for an AD inherited disorder should also be considered.  

We evaluated to what extent exome sequencing in combination with linkage analysis allowed us 

to identify the causative genes in such small families with unknown cause.  
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OBJECTIVES OF THE RESEARCH 

The general objective is to contribute to understanding the genetics of congenital heart defects 

(CHD) and congenital cardiomyopathies. 

To this aim, we propose to 

1. evaluate the use of Next Generation Sequencing (NGS) in the detection of causal mutations 

of syndromic CHD in sporadic and familial cases. 

 

2. identify and characterize novel genes in individuals and families. 

Based on our findings and current literature, to provide updated guidance for the introduction 

of NGS into the congenital cardiology clinic. 
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CHAPTER 3 

THE USE OF NEXT GENERATION SEQUENCING (NGS) IN THE 

DETECTION OF CAUSAL MUTATIONS OF SYNDROMIC CHD IN 

SPORADIC CASES 
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INTRODUCTION 

Congenital heart defects (CHD) , including trivial lesions such as small muscular ventricle septal 

defects, have an incidence of 7,5/100 live births making it the most common birth defect [1]. Of 

these, 22% have a sporadic CHD in the context of a broader syndrome, i.e. the presence of 

additional major malformations and or dysmorphism [2-4]. This is associated with an increased 

morbidity and mortality and carries a high risk of developmental delay and intellectual disability. 

Thus, syndromic CHD has an important impact on the individual, his family and on society. There 

is an indispensable need for etiological diagnosis, since it is in this group that genetic counselling 

is frequently requested with regard to recurrence risks. In addition, a diagnosis may aid in 

establishing the prognosis with regard to intellectual disability (ID) and additional medical 

complications which are often not yet visible in new-borns. 

Identifying the underlying genetic defect in these cases still presents a major challenge due to the 

vast etiological heterogeneity of syndromic CHD. Not only can different genes be involved, but 

also different types of mutations (chromosomal or at the gene level) and different inheritance 

patterns exist [5, 6]. Using a clinical approach, an exact etiological diagnosis can be reached in 

about 55% of cases, which have a clinically recognisable syndrome [4]. The diagnosis is 

straightforward for common syndromes (e.g. Down syndrome and 22q11.2 microdeletion 

syndrome), or for those with a characteristic pattern of malformations (e.g. septal defects and 

pre-axial hand defects in Holt-Oram syndrome) or with a highly characteristic type of CHD (e.g. 

supravalvular aortic stenosis in Williams syndrome). The suspected diagnosis can then be 

confirmed by a targeted genetics test, e.g. FISH, array-CGH or gene sequencing. However, 

reaching a clinical diagnosis can be challenging is certain circumstances. Special expertise is 

required to establish a diagnosis in the large number of rare disorders that feature a CHD (e.g. 

Kabuki syndrome), especially when manifestations can be variable (e.g. Alagille syndrome or 

Noonan syndrome). Additionally, in the prenatal or early neonatal setting, the full clinical 

phenotype is not yet apparent, further complicating clinical diagnostics. 

In cases where no clinical diagnosis can be reached, genetic testing has an important role. 

Genome-wide screening for the presence of mutations is therefore an important next step after 
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clinical evaluation. Since the early 2000’s, microarray-CGH was introduced as a tool to screen for 

small chromosomal imbalances. On average, this has led to a diagnosis in 15-20%, based on the 

inclusion criteria and expertise of clinical pre-screening [7]. More recently, massive parallel 

sequencing allowed genome-wide screening of all genes for the presence of sequence alterations.  

 

Previous genetic studies of individuals with a clinically unexplained developmental disorder have 

shown that de novo (dominant) mutations play a major causative role [8-10]. Most syndromic 

CHDs are also caused by de novo dominant mutations, whereas recessive or X-linked inheritance 

is rare, at least in a society where consanguinity is exceptional [11-13]. We here evaluated, in a 

pilot study, exome sequencing as a tool to identify the causal mutations in syndromic non-familial 

CHD. By selecting sporadic cases with a severe and syndromic phenotype, we expected that they 

are enriched for a de novo genetic origin [7, 14]. The most efficient way to identify such de novo 

mutations is a trio approach, where the whole exome sequence (WES) of both parents and the 

affected child are compared. Due to the current high cost of WES analysis in a trio setting, we 

compared this to an index-only approach. Finally, we participated in an international 

collaboration to study a large cohort of syndromic and non-syndromic CHD patients in a trio 

setting.  

 

PATIENTS AND METHODS 

Patient selection and description 

Since it is known that the majority of severe sporadic syndromes have a de novo autosomal 

dominant cause, we hypothesized that also in those with an unknown cause, a de novo dominant 

mutation is present in a significant proportion. For this reason, we analysed nine trios, consisting 

of both parents and the affected child. In addition, we analysed four index-only cases to compare 

both approaches.  
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Inclusion criteria 

1. Syndromic CHD with syndromic defined as the presence of 1 additional major abnormality 

apart from the CHD, or intellectual disability not otherwise explained and/or dysmorphism, 

defined as 3 or more minor anomalies. 

2. An unknown cause of the syndrome after extensive evaluation: 

* All patients were examined by an experienced clinical geneticist and clinical pictures were 

available for discussion with other clinical geneticists and for review of the phenotype in case a 

mutation was found. Clinical information on the parents were available.  

* The patients were old enough to be clinically (re-)evaluated with regard to psychomotor 

development i.e. > 12 months. 

* High resolution array-CGH was normal in the patient and showed no unclassified variants. 

3. DNA was available from the patient and both parents in trio analysis.  

4. Sporadic patients: no familial occurrence i.e. no other family members with the same or a 

similar condition; no familial occurrence of a CHD in a first or second degree relatives. This was to 

exclude the possibility that the heart defect and additional features have a separate cause. 

5. No external causes identified: no teratogens during pregnancy, no neurological damage (e.g. 

during surgery). 

The study was approved by the Ethical Committee University Hospital Leuven (S52853 – 

B322201010111). Informed consent was obtained from all parents.  

The clinical data are presented in Table 1. 
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Clinical description of cases  
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Exome sequencing 

Trio analysis 

WES was done by the Genomics Core KU Leuven/UZ Leuven as follows: Library construction for 

all samples were prepared using TruSeq DNA Library Preparation Kit (Illumina, Inc., San Diego, CA, 

USA) in which platform-specific adaptors and unique DNA indexes were ligated. For each sample, 

1 µg genomic DNA was sheared by sonication to approximately 300bp fragments, followed by 

end-repair, adenylation and adapter ligation steps. DNA sequencing libraries were subsequently 

enriched with the SeqCap EZ Human Exome Library v3.0 (Roche, NimbleGen), reads were 

generated on the Illumina HiSeq2000 or HiSeq2500 machine using a paired-end 2x100 bps 

protocol with 3-4 exome-seq samples pooled per lane of a sequencing flow-cell. Sheared DNA, 

whole genome libraries and enriched exome-seq libraries were validated using DNA-1000 chips 

on the BioAnalyser (Agilent), and library concentrations were determined using the dsDNA Broad 

Range Assay using the Qubit (Invitrogen). Post-capture LM-PCR amplification was performed 

using the Library Amplification Readymix containing KAPA HiFi DNA Polymerase with 14 cycles of 

amplification. 

Sequence reads were aligned to the human genome reference sequence (Genome Assembly 

GRCh37/hg19) with the Burrows-Wheeler Aligner (BWA v. 0.6.2 or v. 0.7.8). SAMtools (v. 0.1.18 

or v. 0.1.19) were used for SAM to BAM files conversion, sorting and indexing alignments. Picard 

tools (v. 1.78 or v. 1.118) were used to compute quality metrics and mark PCR-generated 

duplicates. The Genome Analysis Toolkit (GATK v. 2.4.9 or v. 3.2.2) software package was used to 

perform local realignment around indels and base quality score recalibration. SNPs and small 

indels were called using GATK HaplotypeCaller (v. 2.4.9 or v.3.2.2). Variants annotation was 

performed with ANNOVAR (v. 11-0882013 or v. 11-02-2013), including data sets from dbSNP137, 

the NHLBI 6500 Exome and 1000 Genomes projects for variant frequencies, amino acid change, 

functional predictions from SIFT, Polyphen2, LRT, MutationTaster and PhyloP. 

The total target region was 63 mega base pairs (Mb).  Quality assurance was aimed at having 20X 

coverage in 80% of the targeted exome bases. 
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Index-only analysis 

Due to the cost of WES in Trio analysis, we collaborated with the Human Genome Sequencing 

Center (HGSC) at Baylor College of Medicine through the Baylor-Hopkins Center for Mendelian 

Genomics initiative in an index-only analysis. Whole exome sequencing was performed at the 

HGSC as described previously [15]. Libraries were constructed into Illumina paired-end pre-

capture libraries according to the manufacturer’s protocol (Illumina 

Multiplexing_SamplePrep_Guide_1005361_D) with modifications as described in the BCM-HGSC 

protocol (https://www.hgsc.bcm.edu/content/protocols-sequencing-library-construction). For 

each sample, 0.5 µg of genomic DNA was sheared by sonication to 200-300bp fragments, followed 

by end-repair, adenylation and adapter ligation steps. DNA sequencing libraries were 

subsequently enriched with the SeqCap EZ Human Exome Library v3.0 (Roche, NimbleGen), and 

paired-end reads were generated on the Illumina HiSeq2000 platform with 6 samples pooled per 

lane of a sequencing flow-cell. After the final AMPure XP bead purification, quantity and size of 

the capture library was analyzed using the LabChip GX electrophoresis system. Post-capture LM-

PCR amplification was performed using the Library Amplification Readymix containing KAPA HiFi 

DNA Polymerase with 12 cycles of amplification. The total target region was 37 Mb. The samples 

achieved 89% of the targeted exome bases covered to a depth of 20X or greater. Initial sequence 

analysis was performed using the HGSC Mercury analysis pipeline [16, 17] 

(https://www.hgsc.bcm.edu/software/mercury) which moves data through various analysis tools 

from the initial sequence generation on the instrument to annotated variant calls (SNPs and intra-

read insertions/deletions). Next, the Atlas2 suite (Atlas-SNP and Atlas-indel) was used to call 

variants and produce a variant call file (VCF). Finally, annotation data was added to the VCF using 

a suite of annotation tools “Cassandra” that brings together frequency, function, and other 

relevant information using AnnoVar with UCSC and RefSeq gene models, as well as other internal 

and external data resources. 
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Variant filtering 

1. Trio analysis 

Exome sequences were obtained from both parents and the patient. VCF files were converted 

into Excel files and all further filtering was done manually. Initially, when developing the filtering 

process, we compared different annotation tools (Cassava and GATK), different genome browsers 

(RefGene, Ensembl and knownGene), various chronological orders of filtering steps and stringent 

versus less stringent filtering. We analyzed variants with two classes of quality. Class 1 calls, the 

best quality calls, were all calls (reference or mutant) emitted with a genotype quality bigger than 

70. The genotype quality is the smallest non-zero phred likelihood (PL), with the zero PL value 

being the genotype given to the call. The PL values were always given in the following order: 

homozygous reference, heterozygous, homozygous variant. Class 1 calls were thus calls for which 

both non-zero PL values were bigger than 70, e.g. a homozygous variant has a PL = 185,96,0. Class 

2 calls were less confident calls for which one non-zero PL value is bigger than 70, e.g. a 

heterozygous variant has a PL = 185,0,45. Class 3 calls were not analyzed as these calls were calls 

for which both non-zero PL values were smaller than 70, and thus were classified as “no call”. 

 

1.1. De novo dominant or X-linked hypothesis 

To exclude local rare variants, we first filtered all variants in the patient against variants in 72 

other in-house exomes from patients with various other, distinct phenotypes. All heterozygous 

variants occurring in one other patient were excluded. Next, we filtered for variants that were 

reference in the parents and mutant in the patient, thus retaining possible de novo variants. We 

then retained exonic nonsynonymous variants, exonic/splicing and intronic splicing variants (< 5 

positions from the splicing site). Next, we only retained variants with a frequency of <1%, or with 

an unknown frequency, in the 1000 Genomes Project. In-silico predictions by Polyphen, Mutation 

Taster and SIFT were used as an additional filter when necessary. Only variants predicted as 

damaging or disease causing by 2 or more in-silico tools were then further analysed. The 

remaining list was manually curated with literature using UCSC, OMIM, Pubmed and GeneCards. 
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1.2. Autosomal recessive inheritance   

1.2.1. Homozygous inheritance 

Firstly, the patient was filtered against 72 other in-house exomes, excluding any variant for which 

another patient was homozygous. Next, we retained only variants for which the parents were 

heterozygous. Only exonic, exonic/splicing and potential splicing variants were retained. Only 

variants occurring with a frequency of <5% or with an unknown frequency in the 1000 Genomes 

Project were included. Remaining variants were manually filtered according to inheritance 

pattern: both parents needed to be heterozygote. In-silico predictions and manual curation of the 

remaining variants were then done as described above.   

1.2.2. Compound heterozygous inheritance 

Firstly, the patient was filtered against 72 other in-house exomes, excluding any variant for which 

an individual was homozygous. Next, we retained only variants for which the parents were 

heterozygous. Only exonic, exonic/splicing and splicing variants were included as described 

previously. Variants occurring with a frequency of <5% or with an unknown frequency in the 1000 

Genomes Project were included. Remaining variants were manually filtered according to the rule: 

one paternal and one maternal inherited variant occurring in the same gene. In-silico predictions 

and manual curation of the remaining variants were done as described above.  

 

1.3. X-linked recessive inheritance 

Only variants on the X-chromosome were selected in the patient, and reference calls were 

excluded. Only maternal inherited variants were included as the father would have to be affected 

if he was carrying the variant. Only exonic, exonic/splicing and splicing as described above were 

included. Variants occurring with a frequency of <5% or with an unknown frequency in the 1000 

Genomes Project were included. In-silico predictions and manual curation of the remaining 

variants were done as described above. 
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2. Index-only analysis 

To identify autosomal dominant or X-linked candidate mutations, the patient was first filtered 

against 79 local exomes, i.e. where only the patient is heterozygous for a specific variant. Only 

exonic, exonic/splicing and splicing as described above were included. Variants occurring with a 

frequency of <1% or with an unknown frequency in the 1000 Genomes Project were included. In-

silico predictions by Polyphen, Mutation Taster and SIFT were used with discretion as an 

additional filter; only variants predicted as damaging or disease causing by 2 or more in-silico 

tools were further analyzed.  The remaining variant list was then manually curated with literature 

using UCSC, OMIM, Pubmed and GeneCards.  

For the autosomal recessive hypothesis, homozygous calls were kept in the patient where no 

other patient was homozygous. Heterozygous filtering was also done by keeping all heterozygous 

calls and only retaining the genes where two variants occurred in the same gene. Further filtering 

was not possible for compound heterozygosity (one maternal and one paternal variant in the 

same gene) as parental WES data was not available.  

 

RESULTS 

The variants filtering in the different approaches is schematically shown in figure 1 and 2. 
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Figure 1 

Variant filtering steps for de novo inheritance using trio analysis w
ith the rem

aining variants after each filtering step show
n in the accom

panying table.  
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Figure 2 

Variant filtering steps for dom
inant or X-linked inheritance using index-only analysis w

ith the rem
aining variants after each filtering step show

n in the 
accom

panying table. 
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Identification of pathogenic mutations 

Trio-analysis 

We analysed 9 patients with a syndromic CHD by using a trio approach. A pathogenic mutation 

was identified in 4 of them, 3 in known genes and one in MEIS2 [18] which had previously 

been suggested as a candidate gene for CHD, ID and cleft palate. Below, we describe clinical 

and genetic data in these four cases in more detail.   

Patient 1 (DYRK1A) 

This boy was the only child of healthy, unrelated, Caucasian parents. During pregnancy, intra-

uterine growth retardation (IUGR) was noted at 34 weeks. He was delivered by caesarean 

section because of transverse position, at a gestational age of 38 weeks. Weight at birth was 

2,7 kg (SD -1,2), length 46 cm (SD -1,64) and head circumference 32,7 cm (SD -1,64). On day 8 

he was diagnosed with necrotizing enterocolitis, necessitating abdominal surgery and 

resulting in short bowel. Due to persistent feeding problems, nasogastric feeding was 

necessary in infancy. Cardiac evaluation on day 6 showed a bicuspid aortic valve with 

borderline left ventricle and mitral valve as well as an important preductal coarctation of the 

aorta. There was a right arteria lusoria.  The coarctation was initially treated with 

percutaneous stenting, at the age of 5 months a coarctectomy was performed. He was 

hypertonic and had hyperreflexia. MRI at the age of 1 month showed enlarged, symmetrical 

sulci, cisterns and ventricles with global hypoplasia of the cerebellum - most prominent in the 

parietal region. Hypoplasia of the corpus callosum was also noted. 

Ophthalmologic evaluation revealed small and pale optic discs.  At the age of 3 years he was 

diagnosed with epilepsy. His development was severely delayed, and he followed special 

education.  Facial features included decreased facial expression, sparse hair and deep-set 

eyes, prominent nasal bridge, bitemporal narrowing, protrusion of the upper lip and mild 

retrognathia (Figure 3). He had a small scrotum, widely spaced nipples and pectus excavatum.  

At the age of 6 years 7 months, weight was 16,3 kg (SD -2,8), height 110 cm (SD -2,2) and head 

circumference 44,5cm (SD -4,7).   

 

After variant filtering as outlined in the methods section, we identified 77 remaining variants. 

This gene list was manually curated using functional data and genotype-phenotype 
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correlations for the implicated genes. We thus identified a de novo stopgain mutation in the 

DYRK1A-gene resulting in a premature stopcodon NM_001396.3 c.C1309T:p.R437X. Results 

were confirmed by Sanger sequencing. 

 

 
Figure 3 

Clinical pictures of the patient with a de novo DYRK1A loss-of-function mutation at age 3 years 

7 months.  He has decreased facial expression, sparse hair, deep-set eyes, prominent nasal 

bridge, bitemporal narrowing, protrusion of the upper lip and mild retrognathia. He has widely 

spaced nipples and pectus excavatum. 

 

Patient 2 (MEIS2) 

This female patient presented with multiple congenital malformations including cleft palate 

and a CHD (septal defects and aortic coarctation). She had severe feeding problems, severely 

delayed gross motor and verbal development. She was diagnosed with moderate ID and 

autism spectrum disorder. Facial dysmorphism consisted of bitemporal narrowing, arched and 

laterally extended eyebrows, mild upslanting palpebral fissures, deep set eyes, a tented upper 
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lip, thin upper vermilion, full lower vermilion, broad first ray of hands and feet, a gap between 

the first and second toes and syndactyly of toe II-III. 

After variant filtering we identified variants in 48 candidate genes. This list was manually 

curated using functional data and genotype-phenotype correlations for the implicated genes. 

We thus identified a de novo non-frameshift deletion of three base pairs in the MEIS2 gene 

NM_170674.2 c.998_1000del:p.Arg333del as the most likely cause. This caused a deletion of 

three nucleotides GAA and thus led to deletion of the amino acid Arginine (Arg). Results were 

confirmed by Sanger sequencing. 

Since this was the first case with an intragenic sequence alteration, we reported this in a 

separate manuscript (see annex Chapter 3.1 [18]). 

 

Patient 3 (SALL1) 

This female patient was an only child of unrelated parents. No other family members were 

known with intellectual disability, congenital heart defects or renal abnormalities. She had 

IUGR with a birth weight of 1,4 kg (SD -4,2) at the PMA of 38 weeks. She was diagnosed with 

Tetralogy of Fallot with agenesis of the pulmonary valve and an aneurysmatic pulmonary 

artery as well as trifurcation of the brachiocephalic truncus for which she underwent surgical 

correction. She had congenital renal hypoplasia with chronic renal insufficiency. At the age of 

9 years her head circumference was 48cm (SD -2.7), her weight 20.2kg (SD -2.8) and her height 

127.3 cm (SD -1.4), and she had moderate ID. There was facial dysmorphism with an 

asymmetric crying face, dry skin, deep palmar grooves, long slender fingers, excessive pubic 

adipose tissue, a short fifth toe and a relatively long first toe.  

After variant filtering as outlined in the methods section, we identified 97 remaining variants. 

This gene list was manually curated using functional data and genotype-phenotype 

correlations for the implicated genes. We thus identified a de novo frameshift mutation in the 

SALL1-gene c.1998_1999del:p.666_667del. Results were confirmed by Sanger sequencing. 

Patient 4 (EFTUD2) 

This was a female patient with a truncus arteriosus and right aortic arch. The diagnosis was 

made late in childhood when there was already irreversible obstructive pulmonary 
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hypertension and Eisenmenger syndrome as well as moderate truncal valve insufficiency 

grade 2-3/4.  She had severe intellectual disability.  There was microcephaly with a head 

circumference of 47 cm (SD -3,1) at the age of 8 years and 5 months. Her weight and height 

were normal. She had a cleft palate, hearing impairment, epilepsy which started in infancy. 

She had facial dysmorphism with micrognathia and upslant of the eyes. 

After variant filtering, we identified 83 remaining variants. This gene list was manually curated 

using functional data and genotype-phenotype correlations for the implicated genes. We thus 

identified a de novo frameshift mutation of one base pair in the EFTUD2-gene 

NM_004247:exon9:c.671delG:p.G224fs. Results were confirmed by Sanger sequencing. 

 

Unsolved Trios 

In the unsolved trios the same filtering methods were used as mentioned before and resulted 

in between 22 and 109 variants in de novo calls. In the hypothesis of autosomal recessive 

inheritance between 4 and 26 variants were left. 
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Index-only analysis 

Of the four cases studied, a pathogenic mutation could be identified in one. The detailed 

clinical description and genetic data are given below.  

 

Patient 10 (ANKRD11) 

The boy was the only child of unrelated parents. No other family members were known with 

developmental delay or intellectual disability. He was born at term with a birth weight of 3000 

gram. He was edematous. The diagnosis of a congenital cardiopathy was made; i.e. an ASD II 

and VSD. No cardiac interventions or surgery was necessary. He had a nasal speech and was 

hearing impaired. He had microcephaly with a head circumference of 48,9cm (SD -2.2), weight 

15,7kg (SD-4.8) and height 109cm (SD -3.8) at the age of 8 years. He received growth hormone 

therapy for his short stature. He had mild intellectual disability and followed special education 

for children with special needs and autism spectrum disorder.  He had camptodactyly of 

several fingers with a broad first ray and bilateral short fourth metatarsal. The space between 

the first and second toe was increased. His maxillary incisors were broad. There was 

endorotation of the femur and mild bowing of the lower legs. He had a rigid back with normal 

curvature. Previous genetic testing, including microarray-CGH and mutation analysis of 

HDAC4-gene were normal. After variant filtering, 308 variants were left. Further manual 

curation showed a nonsense mutation in the ANKRD11 gene (c.7189C>T, p.Gln2397*). This 

mutation occurred de novo, and confirmed the diagnosis of KBG syndrome [19]. 
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DISCUSSION 

The introduction of NGS has revolutionized the identification of gene mutations. However, the 

bottleneck has shifted from variant identification to variant interpretation. In this study, we 

have applied whole exome sequencing to identify causative mutations in individuals with a 

sporadic, syndromic CHD.  

A de novo filter in a trio approach resulted in finding a genetic etiology in 4 out of 9 cases. In 

the index-only analysis, a causal mutation was identified in only one case out of 4. Whereas 

the figures in this pilot study were small we found, not unexpectedly, that filtering for de novo 

mutations using a trio approach increased efficiency in filtering. However, even in a trio 

analysis, on average still 65 candidate variants remained (range 22-109), compared to an 

average of 259 (range 51-339) in the index-only analysis. This was partly due to the initial 

poorer quality of the sequencing at the start of this project. At the initial phase of exome 

introduction in our laboratory with the first variant calling algorithm, calling was less reliable 

and thus we also included the less reliable calls, resulting in an inflation of the number of 

remaining potentially de novo variants. Currently, with improved sequencing quality and 

bioinformatics filtering tools, a much lower number of de novo variants is expected after 

filtering.  

In a diagnostic setting, additional filtering could be done using a panel of known genes 

associated to the phenotype under study. One approach is targeted capture and resequencing 

of a panel of known CHD genes or of all known genes associated to a genetic disorder 

(Mendeliome). The coverage is greatly improved with this method and the frequency of 

variants with unknown significance is reduced. The drawback is that no new genes will be 

discovered to broaden the genetic landscape of unsolved syndromic cardiopathies. 

Establishing a genotype-based filter will require an exhaustive list of gene-phenotype 

associations. However, for CHD, such a gene list is almost certainly incomplete. First, CHD is a 

feature of many syndromes, and in some, CHD only rarely occurs. In a recent study, syndromic 

CHD patients were found to carry an excess of de novo protein truncating variants in 

Developmental disorder (DD) genes not known to be associated to CHD [20]. In our study, we 

identified the first DYRK1A mutation associated to a CHD, but since then, DYRK1A has been 

found to be an important ID gene, associated to CHD in a significant proportion of cases [20, 
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21]. Since all cases we studied were known with ID, we could use a filter for all known genes 

associated with ID. This list of ID-genes is extensive [10], and still incomplete, since novel genes 

for ID are being identified continuously. This was illustrated by our finding of a MEIS2 mutation 

in one of the cases [18] where it has been a candidate gene for developmental disorders, but 

no prior intragenic sequence variants have been described. Additionally, it would be difficult 

to use in a neonatal setting as ID only becomes apparent at a later age. 

An additional requirement for optimal functioning of such a phenotype-based filtering is a 

correct phenotypic description. Standardized nomenclature exists, for instance the Human 

Phenotype Ontology (HPO) [22], which is being adopted as the standard in the field of 

developmental disorders. Whereas the standardized description of major malformations (e.g. 

CHD, cleft lip, polydactyly etc.) is reliable, the description of dysmorphism is much more 

challenging. Dysmorphism is the combination of several minor anomalies, and a standardized 

nomenclature for minor anomalies exists [23]. However, many features remain subjective 

(e.g. deep set eyes, prominent nasal bridge, bitemporal narrowing). HPO terms to classify 

patients according to phenotypic similarities have been successfully used in computational 

methods [24].  In this computational study variants in the 2741 established Mendelian disease 

genes were grouped in a disease-associated genome (DAG) to develop a targeted enrichment 

panel (7.1 Mb) which had a high coverage of more than 20X in 98%. Data generated was 

analyzed by a computational method called Phenotypic Interpretation of eXomes (PhenIX) 

that evaluated and ranked variants based on their predicted pathogenicity (pathogenicity 

score defined as the single most pathogenic according to three in-silico tools) and semantic 

similarity of the patient phenotype to known Mendelian diseases. A variant score was 

calculated (Variant score = population frequency x pathogenicity score) and genes were 

ranked accordingly. The causal gene was ranked in the first place in computer simulations in 

86% of the time and this tool enabled genetic diagnosis in 28% of unknown cases (n= 11) in a 

prospective study.  

A promising future development is the use of automated recognition of facial features or facial 

gestalt on 2D pictures of a patient, instead of a (subjective) clinical description [25].  
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We anticipate that improved bioinformatics and the inclusion of standardized phenotypic 

information will greatly improve the currently slow and labour-intensive process of variant 

filtering in diagnostic whole exome sequencing.  

After initiating this study, we had the opportunity to participate in a large multicenter study, 

which was led by the Wellcome Trust Sanger Institute in Hinxton UK, with the aim to study the 

genetics of CHD using WES, in 610 syndromic and 1281 non-syndromic patients [20]. We 

contributed 60 trios and 30 singletons.  In this study, de novo mutations (DNM) and rare 

inherited variants were compared to a null mutation model in genes from 3 groups: autosomal 

dominant (AD) CHD genes, AD-developmental disorder (DD) associated genes and all 

remaining protein-coding genes. One of the main conclusions was a larger excess of de novo 

mutations with functional effects (protein truncating (PTV) or missense) in syndromic (S-CHD) 

compared to non-syndromic (NS) CHD cases (Table 2). This confirms the previous observation 

by Homsy et al [26] who reported an excess of de novo PTV in S-CHD (20% of cases) compared 

to only 2% in NS-CHD cases. Of interest, when the genes implicated were stratified according 

to their known gene-phenotype associations, a significant excess of PTV and missense was 

also detected in genes not previously associated with CDH, known DD-genes but also in the 

remaining genes. This confirms that the current genotype-phenotype associations are 

incomplete, and that many CHD genes still remain to be identified. Several novel CHD genes 

were also reported, and the results of our small study indicate that the MEIS2 gene can be 

added to this list.  

In conclusion, our study shows that trio exome analysis is an efficient way to identify 

pathogenic mutations in sporadic cases with a syndromic CHD. The diagnostic yield is high, 

which has a clear benefit to the patient and his family. Moreover, novel genotype-phenotype 

correlations emerge, and new genes involved in CHD can thus be identified.    
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Type of de novo 

mutation 

Gene 

set 

S-CHD 

(n=518) Excess P-value 

NS-CHD 

(n=847) Excess P-value 

 
CHD 27 80,56 1,21x10-43 4 7,3 2,62x10-04 

Protein Truncating DD 12 18,36 3,49x10-13 1 0,94 NS 

 
All 67 1,75 8,92x10-06 67 1,07 NS 

 
CHD 22 8,64 7,35x10-15 12 2,88 3,97x10-04 

Missense DD 14 2,75 2,68x10-04 11 1,32 NS 

 
All 371 1,34 2,85x10-08 593 1,31 1,15x10-10 

 

Table 2 Excess of DNMs in S-CHD and NS-CHD showing the types of DNMs with their functional 

consequences leading to either a protein truncating or missense mutation. Gene sets of congenital heart 

defects (CHD), developmental disorders (DD) and all remaining protein coding genes were compared. 

Adapted from Sifrim et al, Nature Genetics 2016 Sep [20]. 
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CHAPTER 3.1 

MEIS2 Involvement in Cardiac Development, Cleft Palate and 

Intellectual Disability 

 

 

 

 

 

 

 

 

 

Jacoba J. Louw, Anniek Corveleyn, Yaojuan Jia, Greet Hens, Marc Gewillig, Koenraad Devriendt 

Adapted from: American Journal of Medical Genetics May 2015; 167A (5). 
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ABSTRACT 

MEIS2 has been associated with cleft palate and cardiac septal defects as well as varying degrees 

of intellectual disability. We present a female patient with a more severe phenotype compared to 

previous reported patients. She has multiple congenital malformations; cleft palate and congenital 

heart defect characterized by septal defects and aortic coarctation. She has severe feeding 

problems, facial dysmorphism, severely delayed gross motor and verbal development and autism 

spectrum disorder. Facial dysmorphism consisting of bitemporal narrowing, arched and laterally 

extended eyebrows, mild upslanting palpebral fissures, deep set eyes, a tented upper lip, thin 

upper vermilion, full lower vermilion, broad first ray of hands and feet, a gap between the first and 

second toes and syndactyly of toe II-III. 

Exome sequencing revealed a non-frameshift deletion (c.998_1000del:p.Arg333del) of three base 

pairs in the MEIS2 homeodomain. The more severe phenotype is most probably due to dominant-

negative mechanisms. This is the first report showing a de novo small intragenic mutation in MEIS2 

and further confirms the important role of this gene in normal development. 

 

KEYWORDS 

MEIS2, cleft palate, cleft lip, cardiopathy, heart, intellectual disability, next generation sequencing 

(NGS) 
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INTRODUCTION 

MEIS2 is a homeodomain-containing transcription factor of the TALE superfamily. Cytogenetic 

studies have identified MEIS2 as a candidate gene for congenital malformations of the heart and 

palate. In 2007, a first patient with atrial septal defect type secundum (ASD II), cleft palate, 

moderate mental delay, severe speech delay and mild motor delay was described with a 5.3Mb 

deletion in 15q14 [Erdogan et al., 2007]. This was followed by two more patients with cleft palate 

and ventricle septal defect (VSD), respectively showing a deletion of 5.6Mb and 123kb in 15q14 

[Chen et al., 2008; Crowley et al., 2010]. MEIS2 was the only gene overlapping in all of these 

patients, making it the primary candidate gene for cleft palate, cardiac septal defects and varying 

degrees of developmental delay. More recently, nine patients, including a family with four 

patients, demonstrate that MEIS2 disruption alone can cause cleft palate and cardiac defects (VSD) 

[Chen et al., 2008; Johansson et al., 2014; Crowley et al., 2010]. One of these also suffered from 

autism spectrum disorder, albeit with mild intellectual disability (ID) and without cleft palate or 

cardiopathy [Johansson et al., 2014]. Interestingly, most of these patients had delayed motor 

development, but varying degrees of mental disability, ranging from normal to moderate ID. It 

remains uncertain whether the ID observed in the other individuals is related to a deletion of 

nearby genes, or related to haploinsufficiency of the MEIS2 gene. We here report the first patient 

with an intragenic MEIS2 mutation detected by exome sequencing. 

 

CLINICAL REPORT 

A female patient is the second child of healthy, unrelated parents, and family history is negative 

regarding congenital malformations. She was born at term after an uneventful pregnancy, with 

weight 3650gram (25-50th centile), length 51cm (50th centile) and head circumference 36cm (50-

75th centile). Multiple congenital malformations were present, a cleft of the soft and posterior part 

of the hard palate,  a congenital heart defect (a large perimembranous, inlet-to-outlet VSD, an ASD 

II, a small left ventricular outflow tract without obstruction, and aortic coarctation). Surgical 

correction with coarctectomy and VSD closure was done. She also had congenital lobar 

emphysema of the left upper lobe for which a lobectomy was performed at the age of 1 month. 

There were severe feeding problems with gastro-esophageal reflux, oral aversion, aerophagia and 

achalasia necessitating gastrostomy and Botox infiltrations. She has arched and laterally extended 
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eyebrows, mild upslanting palpebral fissures, deep set eyes, a tented upper lip, thin upper 

vermilion, full lower vermilion. There was bitemporal narrowing. She had a broad first ray of hands 

and feet, a gap between the first and second toes and syndactyly of toe II-III (Figure 1). Biometry 

at the age of 5years 8months was height 108.5cm (10th centile) and weight 15.8kg (3rd centile). 

Her gross motor and verbal development was severely delayed. She could sit at the age of 17 

months and walk at the age of 30 months. At the age of 4 years she pronounces single words. 

Mentally she scored equivalent to age 25 months at the age of 50 months (4 years 2 months), with 

an IQ in the range of 35-49, placing her in the moderate group of intelligence disability.  The 

diagnosis of autism spectrum disorder was made at the age of 3 years. Cerebral echography and 

MRI could not detect any abnormalities. Previously performed array-CGH (1Mb resolution) was 

normal. 

 

Figure 1  

Clinical pictures at the age of 2 years and 5 years showing mild dysmorphic facial features: 

bitemporal narrowing, arched and laterally extended eyebrows, mild upslanting palpebral fissures, 

deep set eyes, a tented upper lip, thin upper vermilion and full lower vermilion. Pectus excavatum 

is most likely due to cardiac surgery performed at a young age. 
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MATERIALS AND METHODS 

EXOME ANALYSIS 

Informed consent for trio analysis by exome analysis was obtained from the parents. Library 

construction for all samples were prepared using TruSeq DNA Library Preparation Kit (Illumina, 

Inc., San Diego, CA, USA) in which platform-specific adaptors and unique DNA indexes were 

ligated. For each sample, 1 µg genomic DNA was sheared by sonication to approximately 300bp 

fragments, followed by end-repair, adenylation and adapter ligation steps. DNA sequencing 

libraries were subsequently enriched with the SeqCap EZ Human Exome Library v3.0 (Roche, 

NimbleGen), and 2 × 100-bp paired-end reads were generated on the Illumina HiSeq2000 platform 

with 3-4 exome-seq samples pooled per lane of a sequencing flow-cell.  Sheared DNA, whole 

genome libraries and enriched exome-seq libraries were validated using DNA-1000 chips on the 

BioAnalyser (Agilent), and library concentrations were determined using the dsDNA Broad Range 

Assay using the Qubit (Invitrogen). 

Data analysis was done using commercial and in-house developed software (Genomics Core/UZ 

Leuven). Exome sequences were obtained from both parents and the patient. As our hypothesis 

was a de novo mutation, the patient was filtered against all in-house (n=72) exomes, allowing the 

exclusion of local rare variants. All non-reference calls were excluded in the parents, reference 

calls were excluded in the patient. According to Ensembl (www.ensemble.org) only exonic, 

exonic/splicing and splicing variants were included. Synonymous variants were excluded. Variants 

occurring with a frequency of <1% in the 1000 genomes project or with an unknown frequency 

were included. Variants occurring in HLA and MUC genes were excluded. Splicing site changes 

occurring at less than 5 positions were considered as possible candidates. 

 

RESULTS 

EXOME SEQUENCING 

After variant filtering as outlined in the methods section, we identified variants in 48 candidate 

genes (Table IS). This gene list was manually curated using functional data and genotype-

phenotype correlations for the implicated genes. We thus identified a de novo non-frameshift 

deletion of three base pairs in the MEIS2 gene NM_170674.2 c.998_1000del:p.Arg333del as the 
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most likely cause. This causes a deletion of three nucleotides GAA and thus deletion of the amino 

acid Arginine (Arg). Results were confirmed by Sanger sequencing (Figure 2). 

 

 

Figure 2  

Sanger sequencing of the patient, father and mother showing a de novo non-frameshift deletion in 

the patient of three base pairs in the MEIS2 gene. 
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DISCUSSION 

We report the first patient who carries a small intragenic mutation in the MEIS2 gene, confirming 

the previous association of MEIS2 with cleft palate and cardiac septal defects. No other in-frame 

deletions or point mutations have been described until now. Of interest, the present patient had 

moderate ID, severe gross motor delay and autism spectrum disorder. Previously reported 

patients with an intragenic MEIS2 deletion also had delayed motor development, but varying 

degrees of delay in mental development, ranging from normal to moderate. One of these patients 

also suffered from autism spectrum disorder as diagnosed in our patient, albeit with a mild ID and 

without cleft palate or cardiopathy [Johansson et al., 2014] Table 1. 

MEIS2 is a transcription factor and most likely has a role in the stabilization of the 

Homeoprotein-DNA complex. It binds to HOX or PBX proteins to form dimers and 

multimers. The arginine residue deleted is located in the homeodomain. This single amino 

acid deletion could therefore interfere with DNA binding. Arg333 is highly conserved across 

all species and isoforms. In addition, according to the Protein Databank in Europe 

(PDBePISA) database, the Arg residue mutated in the present patient is involved in a 

multimer contact [Krissinel et al., 2007; (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html)]. 

Any hydrogen bonds that could be made by the wild type residue to other monomers would 

therefore be lost and affect the multimeric compound. Therefore, the more pronounced ID 

observed in the present patient may possibly be due to another mechanism than merely 

haploinsufficiency. Thus, the deletion of the Arg residue may have an additional dominant 

negative effect. 
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Case 
num

ber 
Sex 

Chrom
osom

al aberration 
G

enes involved 
Cardiac m

alform
ation 

Clefting 
M

ental developm
ent 

1 
F 

5.3 M
b del 

A
CTC, G

REM
1, CX36, M

EIS2, 
A

RH
G

A
P11A

, CH
RN

A
7, CH

RM
5 

ASD II 
palate 

severe speech delay, m
ild m

otor delay 

2 
M

 
5.6 M

b del 
M

EIS2, m
any other genes 

VSD 
palate 

delayed, epilepsy 

3 
M

 
123 kb del 

M
EIS2 

VSD 
cleft soft palate 

bilateral m
oderate hearing loss 

4 
F 

58 kb dup 
M

EIS2 
none 

subm
ucous cleft palate 

m
ild ID 

5 
F 

58 kb dup 
M

EIS2 
none 

subm
ucous cleft palate 

delayed 

6 
M

 
58 kb dup 

M
EIS2 

none 
open cleft palate 

delayed 

7 
F 

58 kb dup 
M

EIS2 
none 

open cleft palate 
m

ild ID 

8 
F 

0.6 M
b del 

C15orf41, CSN
K1A

1P1, M
EIS2 

VSD 
open cleft palate 

norm
al 

9 
M

 
0.6 M

b del 
C15orf41, CSN

K1A
1P1, 

LO
C145845, M

EIS2 
none 

bilateral cleft lip and 
palate 

delayed 

10 
M

 
1.0 M

b del 
C15orf41, CSN

K1A
1P1, 

LO
C145845, M

EIS2 
none 

none 
m

ild ID, ASD 

11 
M

 
1.9 M

b del 

C15orf41, CSN
K1A

1P1, 
LO

C145845, M
EIS2, TM

CO
5A

, 
SPRED

1, FA
M

98B, RA
SG

RP1, 
C15orf53 

VSD 
none 

delayed 

12 
F 

4.8 M
b del 

C15orf41, CSN
K1A

1P1, 
LO

C145845, M
EIS2, TM

CO
5A

, 
SPRED

1, FA
M

98B, RA
SG

RP1, 
C15orf53, C15orf54 

VSD 
subm

ucous cleft palate, 
bifid uvula 

delayed 

13 
F 

c.998_1000del: p.Arg333del  
M

EIS2 
ASD II, VSD, LVO

TO
, 

CoA 
soft and hard cleft 

palate 
severe gross m

otor and verbal delay, ASD 

 Table 1 
M

ain phenotypic features and involved genes of patients w
ith M

EIS2 haploinsufficiency.
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Functional studies showed that MEIS2B, one of two orthologs of MEIS2 in zebrafish, is important in 

heart formation, regulation and function. Knockdown of MEIS2B in zebrafish embryos lead to 

defective cardiac morphogenesis with no midline formation of the linear heart tube, severe 

defects in heart looping, pericardial edema and a significantly reduced heart rate [Paige et al., 

2012; Glickman et al., 2002]. Interestingly, expression of MEIS2B in the heart field of developing 

mutant zebrafish embryos closely resembles that of GATA4, a known cardiac transcription factor 

[Paige et al., 2012]. Mutations in GATA4 are well-known in causing primarily cardiac septal defects, 

ranging from ASD and VSD to atrio-ventricular septal defects (AVSD) [Garg et al., 2003]. Regarding 

ID and developmental delay; MEIS2B expression is observed in the developing hindbrain of 

somites [Zerucha et al., 2001], and MEIS2 is a principal key factor in patterning of the hindbrain 

[Waskiewicz et al., 2001] as well as normal mesencephalic development in mice and chick embryos 

[Shim et al., 2007; Agoston et al., 2009; Vennemann et al., 2008]. 

This case report builds on the previous publications that MEIS2 should be considered in patients 

with cleft palate, septal cardiac defects and ID.  Further functional studies regarding the role of 

MEIS2 in neuronal pathways and mental development will be necessary to explore the exact 

mechanisms involved in this intricate mechanism. 
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SU
PPLEM

EN
TA

RY O
N

LIN
E M

A
TER

IA
L 

Table IS 

Rem
aining variants after filtering for heterozygous calls in the index and reference calls in both parents.  

Chr 
Start 

End 
R

eference 
O

bserved 
G

ene 
A

A
 Change 

Function 
Exonic function 

1 
152276671 

152276671 
C 

T 
FLG

 
FLG

:N
M

_002016:exon3:c.G
10691A

:p.R
3564H

 
exonic 

nonsynonym
ous SN

V
 

1 
111957553 

111957553 
G

 
T 

O
V

G
P1 

O
V

G
P1:N

M
_002557:exon11:c.C1570A

:p.L524M
 

exonic 
nonsynonym

ous SN
V

 

1 
111957558 

111957558 
T 

G
 

O
V

G
P1 

O
V

G
P1:N

M
_002557:exon11:c.A

1565C:p.K522T 
exonic 

nonsynonym
ous SN

V
 

1 
111957561 

111957561 
T 

C 
O

V
G

P1 
O

V
G

P1:N
M

_002557:exon11:c.A
1562G

:p.E521G
 

exonic 
nonsynonym

ous SN
V

 

1 
11584023 

11584023 
G

 
T 

PTCH
D

2 
PTCH

D
2:N

M
_020780:exon11:c.G

2387T:p.S796I 
exonic 

nonsynonym
ous SN

V
 

2 
233712209 

233712209 
TCA

G
CA

G
CA

G
CA

G
CTG

CCA
CA

G
 

T 
G

IG
YF2 

G
IG

YF2:N
M

_001103147:exon29:c.3676_3696del:p.1226_1232del 
exonic 

nonfram
eshift deletion 

2 
240982073 

240982073 
G

 
C 

PR
R21 

PR
R21:N

M
_001080835:exon1:c.C327G

:p.C109W
 

exonic 
nonsynonym

ous SN
V

 

2 
240982135 

240982135 
A

 
G

 
PR

R21 
PR

R21:N
M

_001080835:exon1:c.T265C:p.S89P 
exonic 

nonsynonym
ous SN

V
 

2 
240982199 

240982199 
A

 
C 

PR
R21 

PR
R21:N

M
_001080835:exon1:c.T201G

:p.C67W
 

exonic 
nonsynonym

ous SN
V

 

2 
240982200 

240982200 
C 

T 
PR

R21 
PR

R21:N
M

_001080835:exon1:c.G
200A

:p.C67Y 
exonic 

nonsynonym
ous SN

V
 

3 
171065010 

171065010 
G

 
G

A
 

TN
IK 

  
splicing 

  

3 
75832519 

75832519 
A

 
G

 
ZN

F717 
  

splicing 
  

3 
75832522 

75832522 
G

 
T 

ZN
F717 

  
splicing 

  

4 
47033767 

47033767 
A

TCTCG
C 

A
 

G
A

B
RB

1 
  

splicing 
  

4 
144922436 

144922436 
T 

G
 

G
YPB 

G
YPB

:N
M

_002100:exon2:c.A
38C:p.E13A

 
exonic;splicing 

nonsynonym
ous SN

V
 

4 
59469 

59469 
A

 
G

 
ZN

F718 
  

splicing 
  

7 
142460428 

142460428 
CCA

A
 

C 
PR

SS1 
  

splicing 
  

8 
144940706 

144940706 
C 

T 
EPPK1 

EPPK1:N
M

_031308:exon1:c.G
6716A

:p.R
2239H

 
exonic 

nonsynonym
ous SN

V
 

9 
35809214 

35809214 
G

 
T 

N
PR

2 
N

PR
2:N

M
_003995:exon21:c.G

3048T:p.Q
1016H

 
exonic 

nonsynonym
ous SN

V
 

9 
35683240 

35683240 
T 

TG
 

TPM
2 

  
splicing 

  

10 
135439049 

135439049 
G

 
C 

FR
G

2B 
FR

G
2B

:N
M

_001080998:exon4:c.C391G
:p.P131A

 
exonic 

nonsynonym
ous SN

V
 

10 
50819952 

50819952 
G

 
T 

SLC18A
3 

SLC18A
3:N

M
_003055:exon1:c.G

1166T:p.G
389V

 
exonic 

nonsynonym
ous SN

V
 

11 
48346541 

48346541 
A

 
T 

O
R

4C3 
O

R
4C3:N

M
_001004702:exon1:c.A

49T:p.T17S 
exonic 

nonsynonym
ous SN

V
 

11 
48346547 

48346547 
C 

T 
O

R
4C3 

O
R

4C3:N
M

_001004702:exon1:c.C55T:p.P19S 
exonic 

nonsynonym
ous SN

V
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Table 1S (continued) 

Chr 
Start 

End 
R

eference 
O

bserved 
G

ene 
A

A
 Change 

Function 
Exonic function 

11 
56468440 

56468440 
G

 
T 

O
R

9G
9 

O
R

9G
9:N

M
_001013358:exon1:c.G

577T:p.G
193C 

exonic 
nonsynonym

ous SN
V

 

12 
49994257 

49994257 
T 

G
 

FA
M

186B 
FA

M
186B

:N
M

_032130:exon4:c.A
1166C:p.H

389P 
exonic 

nonsynonym
ous SN

V
 

12 
53069222 

53069222 
CA

CCTCCG
G

A
G

CCG
TA

G
CTG

CT 
C 

KR
T1 

KR
T1:N

M
_006121:exon9:c.1669_1689del:p.557_563del 

exonic 
nonfram

eshift deletion 

12 
11183541 

11183541 
T 

C 
TA

S2R
31 

TA
S2R

31:N
M

_176885:exon1:c.A
394G

:p.M
132V

 
exonic 

nonsynonym
ous SN

V
 

13 
20279879 

20279879 
T 

C 
PSPC1 

PSPC1:N
M

_001042414:exon9:c.A
1309G

:p.M
437V

 
exonic 

nonsynonym
ous SN

V
 

14 
19553586 

19553586 
T 

C 
PO

TEG
 

PO
TEG

:N
M

_001005356:exon1:c.T170C:p.L57P 
exonic 

nonsynonym
ous SN

V
 

15 
79067065 

79067065 
G

 
A

 
A

D
A

M
TS7 

A
D

A
M

TS7:N
M

_014272:exon12:c.C1777T:p.P593S 
exonic 

nonsynonym
ous SN

V
 

15 
72954577 

72954577 
C 

G
 

G
O

LG
A

6B 
  

splicing 
  

15 
37188864 

37188864 
A

TTC 
A

 
M

EIS2 
M

EIS2:N
M

_170674:exon10:c.998_1000del:p.333_334del 
exonic 

nonfram
eshift deletion 

16 
67424209 

67424209 
G

 
T 

TPPP3 
TPPP3:N

M
_016140:exon5:c.C399A

:p.G
133G

 
exonic 

nonsynonym
ous SN

V
 

17 
38126911 

38126911 
A

A
CA

CA
C 

A
 

G
SD

M
A

 
  

splicing 
  

17 
39296412 

39296412 
T 

A
 

KR
TA

P4-6 
KR

TA
P4-6:N

M
_030976:exon1:c.A

328T:p.S110C 
exonic 

nonsynonym
ous SN

V
 

17 
39253949 

39253949 
T 

A
 

KR
TA

P4-8 
KR

TA
P4-8:N

M
_031960:exon1:c.A

388T:p.S130C 
exonic 

nonsynonym
ous SN

V
 

17 
39253953 

39253953 
G

 
T 

KR
TA

P4-8 
KR

TA
P4-8:N

M
_031960:exon1:c.C384A

:p.S128R 
exonic 

nonsynonym
ous SN

V
 

17 
39254126 

39254126 
C 

T 
KR

TA
P4-8 

KR
TA

P4-8:N
M

_031960:exon1:c.G
211A

:p.V
71M

 
exonic 

nonsynonym
ous SN

V
 

17 
39254133 

39254133 
G

 
T 

KR
TA

P4-8 
KR

TA
P4-8:N

M
_031960:exon1:c.C204A

:p.S68R 
exonic 

nonsynonym
ous SN

V
 

17 
78897395 

78897395 
C 

A
 

R
PTO

R 
R

PTO
R

:N
M

_020761:exon23:c.C2730A
:p.G

910G
 

exonic 
nonsynonym

ous SN
V

 

19 
42795827 

42795827 
G

 
C 

CIC 
CIC:N

M
_015125:exon11:c.G

2816C:p.G
939A

 
exonic 

nonsynonym
ous SN

V
 

19 
7935863 

7935863 
G

 
T 

FLJ22184 
U

N
KN

O
W

N
 

exonic 
nonsynonym

ous SN
V

 

19 
50826910 

50826910 
G

 
T 

KCN
C3 

KCN
C3:N

M
_004977:exon2:c.C1300A

:p.L434M
 

exonic 
nonsynonym

ous SN
V

 

19 
13936534 

13936534 
G

 
T 

ZSW
IM

4 
  

splicing 
  

20 
26061859 

26061859 
G

 
T 

FA
M

182A
 

  
exonic 

stopgain SN
V

 

20 
62655943 

62655943 
C 

A
 

PR
PF6 

PR
PF6:N

M
_012469:exon14:c.C1805A

:p.A
602D

 
exonic 

nonsynonym
ous SN

V
 

X 
140993695 

140993695 
G

 
T 

M
A

G
EC1 

M
A

G
EC1:N

M
_005462:exon4:c.G

505T:p.A
169S 

exonic 
nonsynonym

ous SN
V
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CHAPTER 4 

IDENTIFICATION OF THE GENETIC CAUSE OF FAMILIAL 

SYNDROMIC CARDIOPATHIES AND RARE TYPES OF 

CARDIOMYOPATHY 



72 
 

ABSTRACT 

We studied five small families with two affected siblings but unaffected parents with a familial 

form of congenital syndromic cardiopathy or a rare cardiomyopathy. 

Genetic analysis was done using linkage analysis in the parents and both the unaffected and 

affected siblings, followed by whole exome sequencing (WES). WES was done in the affected 

siblings only of Family 1 and 2, and in all family members of Families 3, 4 and 5. Data analysis was 

done using commercial and in-house developed software. Only variants in genes from the linkage 

regions were retained. Variant analysis was done according to the hypothesis of different possible 

inheritance patterns (autosomal recessive, dominant with parental mosaicism and X-linked).  

In the two families with a rare type of cardiomyopathy, a genetic cause was identified. 

Homozygous mutation of ALMS1 explained the mitogenic cardiomyopathy phenotype, and was 

confirmed by another group studying unrelated families. We identified novel compound 

heterozygous mutations in KIF20A as the cause of a lethal form of restrictive cardiomyopathy of 

the right ventricle. Functional and zebrafish studies supported a role for this gene in the observed 

phenotype. In the three other families with a syndromic type of CHD, no genetic cause was 

identified, suggesting that current genetic analysis tools lack the sensitivity to identify all possible 

mutations.  
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INTRODUCTION 

Familial CHD represents about 4% of all CHD’s. The majority of these are non-syndromic [1-5], 

and genetic testing can often identify the causal genetic mutation, especially in large families [6]. 

Familial syndromic CHD is very rare and occurs in around 1% of all CHD. In some instances, the 

syndrome occurs in different generations: when it is mild and inherited as an autosomal dominant 

disorder (e.g. Holt-Oram syndrome or Noonan syndrome) or when transmitted through an 

unaffected female in X-linked recessive disorders (e.g. Barth syndrome, Duchenne or Becker 

muscular dystrophy). However, most syndromes are severe and have a reduced reproductive 

fitness, due to the severity of the disorder or the associated intellectual disability. This typically 

results in sporadic syndromic CHD (S-CHD) due to a de novo mutation, as discussed in chapter 3. 

In this chapter, we study five small families with two siblings affected with a severe, syndromic 

CHD or with a lethal, exceptional type of cardiomyopathy. These very rare and specific 

phenotypes are likely to have a monogenic cause. In these families, in contrast to large non-

syndromic families, no clinical diagnosis could be reached which could orient our genetic analyses. 

This is because the combination of distinct anomalies observed in the siblings does not fit a known 

entity, and thus constitute a new unknown syndrome [7]. Alternatively, the cardiac phenotype is 

unique, e.g. an early onset/neonatal cardiomyopathy (CM) with unknown genetic cause. In these 

families, the inheritance pattern is most likely autosomal recessive (AR), especially when the 

parents are consanguineous and sometimes X-linked (when the affected siblings are males). 

Germline or low grade somatic mosaicism in one parent for an AD disorder should also be 

considered (Figure 1).  

We evaluated to what extent exome sequencing in combination with linkage analysis allowed us 

to identify the causative genes in these small families.  
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Figure 1. Possible modes of inheritance in families with unaffected parents and affected 

siblings. Mutations in genes are shown as paternal (blue) or maternal (pink). Mutations are 

detected in DNA of white blood cells (WBC) and inherited as autosomal recessive (AR) or X-linked 

recessive disorders, or can be present in DNA of germline cells and thus inherited as an autosomal 

dominant (AD) disorder. 
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MATERIALS AND METHODS 

Patient selection and description 

We analysed 5 families followed in the pediatric cardiology department and Center for Human 

Genetics in our tertiary hospital.  

 

Inclusion criteria 

1. Syndromic CHD or a rare cardiomyopathy with syndromic defined as the presence of 1 

additional major abnormality apart from the CHD, or intellectual disability not otherwise 

explained and/or dysmorphism, defined as 3 or more minor anomalies. 

2. An unknown cause after extensive evaluation: 

* All patients were examined by an experienced clinical geneticist and clinical pictures were 

available for discussion with other clinical geneticists and for review of the phenotype in case a 

mutation was found. Clinical information on the parents and unaffected sibling were available.  

* High resolution array-CGH was normal in the patients and parents and showed no unclassified 

variants. 

3. DNA was available from the patients, both parents and the unaffected sibling.  

5. No external causes identified: no teratogens during pregnancy, no other known cause for 

neurological damage.  

The study was approved by the Ethical Committee University Hospital Leuven (S52853 – 

B322201010111). Informed consent was obtained from all parents.  

  



76 
 

Fam
ily  

Sibling 
G

ender 
R

esult 
A

ge 
CH

D
 

ID
 

O
ther m

ajor 
m

alform
ations 

M
inor 

m
alform

ations 
H

C 
(SD

S) 
W

eight 
(SD

S) 
H

eight 
(SD

S) 
O

ther 

1 
1 

M
 

A
LM

S1 
0 

M
CM

 
N

A 
none 

none 
2,5 

-0,8 
3,0 

 
1 

2 
F 

A
LM

S1 
0 

M
CM

 
N

A 
none 

none 
N

A 
1,6 

-1,8 
 

2 
1 

M
 

KIF20A
 

0 
RCM

 
N

A 
none 

none 
-0,5 

-0,2 
1,0 

 
2 

2 
F 

KIF20A
 

0 
RCM

 
N

A 
none 

none 
0,5 

1,3 
0,9 

 

3 
1 

M
 

 
4,9 

M
S,AS, 

LVO
TO

 
M

ild 
unilateral renal 

agenesis, kyphosis 
facial 

dysm
orphism

 
0,9 

-2,5 
-3,4 

strabism
us 

3 
2 

F 
 

1,5 
AS, LVO

TO
 

M
ild 

Situs inversus totalis 
facial 

dysm
orphism

 
3,3 

-0,2 
-0,8 

strabism
us 

4 
1 

F 
 

5,2 
VSD 

S 

grow
th retardation, 

bilateral postaxial 
polydactyly, atlanto-

occipital fusion, 
colobom

a, hypoplastic 
right kidney 

facial 
dysm

orphism
 

-2,5 
-5 

-3,5 

frequent respiratory 
infections, nystagm

us, 
ectopic neuropituitary 

gland 

4 
2 

F 
 

0,3 
VSD, ASD II, 

PS 
N

A 
(deceased) 

bilateral postaxial 
polydactyly, hypoplasia 

verm
is 

facial 
dysm

orphism
 

N
A 

-1,4 
N

A 

ectopic neuropituitary 
gland, enlarged 
cisterna m

agna 

5 
1 

M
 

 
4,2 

ASD II 
M

ild 
agenesis ductus 

venosus 

pectus carinatum
, 

facial 
dysm

orphism
, 

bilateral palm
ar 

sim
ian crease 

-0,8 
-3,7 

-3,7 

feeding problem
s, 

neutropenia during 
infancy, O

SAS 

5 
2 

M
 

 
0,2 

ASDII 
N

L 
none 

facial 
dysm

orphism
, 

bilateral palm
ar 

sim
ian crease 

-2,3 
-2,7 

-3,6 
 

 Table 1 

Clinical data of the five fam
ilies.  

Colum
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ily num
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ber, gender, genetic result, age at exam

ination, type of CHD, level of ID, other m
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alform
ations, description of m

inor 
anom
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etry and other characteristics. Level of ID at age of exam

ination w
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al (N
L), m

ild, m
oderate (M

) and severe (S). CHD included m
itogenic 

cardiom
yopathy (M

CM
), restrictive cardiom

yopathy (RCM
), m

itral stenosis (M
S), aortic stenosis (AS), left ventricular outflow

 tract obstruction (LVO
TO

), atrial 
septal defect type secundum

 (ASD II), ventricle septal defect (VSD) and pulm
onary stenosis (PS). Head Circum

ference (HC), w
eight and height is given as standard 

deviations. O
bstructive sleep apnea syndrom

e (O
SAS). Som

e data w
as not available (N

A), m
ostly due to the young age at w

hich evaluation of neurologic 
developm

ent w
as not possible.
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Figure 2. Pedigrees of the 5 families studied. 

 

 

 



78 
 

Family 1 

Two siblings from consanguineous parents of Turkish descent (Figure 2, Family 1) presented with 

an isolated dilated cardiomyopathy leading to early death in infancy. The diagnosis of a rare 

cardiomyopathy i.e. mitogenic cardiomyopathy was made histologically. The clinical and genetic 

findings in this family are described in detail in annex Chapter 4.1. 

Family 2 

Two siblings, one male and one female (Figure 2, Family 2), were diagnosed in late fetal life with a CHD 

categorized as restrictive cardiomyopathy (RCM) of the right ventricle (RV). An older sibling and both non-

consanguineous parents had a normal phenotype. Both affected children demised in infancy at the ages 

of respectively 3 and 2 months due to progressive and fatal cardiac failure. The clinical and genetic findings 

in this family are described in detail in annex Chapter 4.2. 

Family 3 

This was a non-consanguineous Caucasian family with two affected children (Figure 2, Family 3). 

The index patient had a complex CHD which required multiple cardiac interventions. The CHD 

consists of a Shone-complex characterized by an arcade mitral valve (MV) with dysplastic and 

thickened valve leaflets, a smaller annulus and short MV chordae. There was aortic stenosis due 

to a small bicuspid aortic valve, thickened leaflets as well as subvalvular aortic stenosis. He had 

mild ID and facial dysmorphism with anteversion of the nares, strabismus, bright blue irides, small 

ears, epicanthic folds, a tented upper lip and full cheeks. He had unilateral renal agenesis, lumbar 

kyphosis and a short neck. There was excessive keloid formation after cardiac surgery which 

required surgical resection.  

His younger sister was born at term (PMA 39 weeks) with a weight of 3,56 kg (SD + 0,4) and a 

head circumference of 36 cm (SD – 0,5). Prenatally there was polyhydramnion; additionally the 

diagnosis of situs inversus totalis was made as well as a mild aortic stenosis. This progressed 

postnatally to a multilevel and complex CHD: a dysplastic mitral valve with thick, muscular 

chordae, a dysplastic tricuspid aortic valve, severe subvalvular aortic stenosis with a subvalvular 

ridge, and hypertrophic cardiomyopathy for which multiple and complex cardiac surgeries were 

necessary. She has mild ID and the same facial dysmorphic features and strabismus as her older 

brother as well as macrocrania with a head circumference of 51,5 cm (SD + 3.3) at the age of 1,5 
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years. In the two siblings, chromosomal analysis by means of array comparative genomic 

hybridization (CGH) was performed using the 180k CytoSure ISCA v2 microarray (Oxford Gene 

Technology, OGT, Oxford, UK). No pathogenic chromosomal variants or recurrent chromosomal 

variants of unknown significance were detected (Table 2, Family 3). 

 

 

 

Figure 3. Clinical findings in two siblings of family 3. 

Note the similar facial features in the index (A & B) and his younger sister (D & E). Cardiac 

ultrasound images show the mitral valve with dysplastic and thickened valve leaflets and chordae 

in the index (C) and multilevel left ventricular outflow tract obstruction with a small LVOT 

(crosses) and subvalvular ridge (arrows) as well as LV hypertrophy. 

 

B C 

D E F 

A 
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Family 4 

The clinical findings in family 4 have been reported before [7]. In short, this was a non-

consanguineous family (Figure 2, family 4) with three children. The index was born at term, with 

birth weight 2640 g (SD -2,1), length 44 cm (SD -3,5) and head circumference 31.5 cm (SD -3). She 

had bilateral postaxial polydactyly of the hands, a perimembranous VSD and a right renal 

hypoplasia. She had upslant of the eyes, hypoplasia of the nasal bridge, anteversion of the 

nostrils, a long and smooth philtrum, a narrow vermillion of the upper lip and a prominent lower 

lip vermillion with a swelling on the right side (Figure 3A). She had temporal balding with coarse 

and brittle hair as well as a hemangioma on the scalp. The nipples were wide set and the feet 

were oedematous. She had a severe growth delay: at age of 19 months, weight was 7.8 kg (SD -

3,4), length 70.5 cm (SD -4,0) and head circumference 44.9 cm (SD -1,7). There was a small 

coloboma of the left eye. She had an ectopic neuropituitary gland but no endocrine disturbance 

was observed (Figure 4E). She had torticollis due to an atlanto-occipital fusion and partial fusion 

of C2-C3. She had a severe ID. She also had frequent respiratory infections. She had a viral 

myocarditis at the age of 5 years after surgical closure of the VSD with secondary dilated 

cardiomyopathy. This evolved to a chronic, but stable, mild cardiac dysfunction with a fractional 

shortening of 27% (normal >30%) under cardiac failure medication. 

Her younger sister was born after an uneventful pregnancy at a gestational age of 32 weeks, with 

a birth weight of 1.2 kg (SD -1,4), length of 37.5 cm (SD -2,0) and head circumference of 26 cm 

(SD – 1,8). She had a VSD with pulmonary stenosis and an ASD II. Postaxial polydactyly of both 

hands was present. The facial features were almost identical to that of her sister (Figure 4B and 

4D). Magnetic resonance imaging of the brain also revealed an ectopic neuropituitary gland, and 

a normal to slightly enlarged posterior fossa associated with an enlarged cisterna magna and mild 

hypoplasia of the cerebellar vermis. Endocrine studies during the first months of life revealed 

normal thyroid and adrenal function, and normal growth hormone levels. She died at the age of 

4 months from postoperative complications after cardiac surgery. 
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Figure 4. Clinical findings in the two affected siblings from family 4. 

Note the similar features in the index (A&C) and her younger sister (B&D). Cerebral magnetic 

resonance imaging (E) of the index showing the ectopic neuropituitary gland as indicated by the 

arrow. 

  

Family 5 

The index patient was born at term as the first child of non-consanguineous Caucasian parents 

(Figure 2, family 5). At birth he had a weight of 2, 13kg (SD -3.3), length of 45 cm (SD -2,5) and 

head circumference of 32cm (SD -1,64). During infancy he had recurrent severe infections due to 

a transient neutropenia. There was a prenatal diagnosis of agenesis of the ductus venosus, 

drainage of the umbilical vein occurred through extrahepatic veins to the right atrium. The heart 

was displaced to the left, horizontal and posterior. The diagnosis of a fenestrated ASD II was made 

A 

C 

B 

D E 
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which closed spontaneously. The umbilicus was implanted to the left and he had pectus 

carinatum. He had facial dysmorphic features with anteversion of the nostrils, retrognathia and 

short palpebral fissures. He had a bilateral palmar simian crease. He had mild intellectual 

disability, and more pronounced gross motor delay. He had obstructive sleep apnea syndrome 

(OSAS). 

 

His younger brother had a milder phenotype. He had a small stature with weight 4,3 kg (SD -2,7), 

height 52cm (SD – 3,6) and head circumference of 38 cm (SD – 2,3) at the age of 2 months. He 

had the same facial dysmorphic features and a small ASD II which closed spontaneously in the 

first year of life. He had no neutropenia. At the age of 2 months, no signs of major developmental 

difficulties were observed.  

 

 

 

Figure 5. Clinical findings in the two brothers from Family 5. 

Note the similar facial phenotype in the index (B) and his younger brother (A). 

 

A B 
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Exome sequencing 

WES was done by the Genomics Core KU Leuven/UZ Leuven as described in Chapter 3. 

In the affected siblings of family 4 and 5 the WES analysis was done in collaboration with the 

Human Genome Sequencing Center (HGSC) at Baylor College of Medicine through the Baylor-

Hopkins Center for Mendelian Genomics initiative in an Index-only analysis. Whole exome 

sequencing was performed at the HGSC as described previously in chapter 3 [8-10]. 

 

Linkage analysis 

Genotyping was done on DNA extracted from peripheral white blood cells, obtained from the 

parents and both the unaffected and affected siblings. A dense SNP marker set derived from the 

250k Affymetrics SNP typing platform was used in a recessive model in all families and in the 

family with two affected males an X-linked model was also done. Genome wide parametric 

linkage analysis with Merlin software was performed  

(http://www.sph.umich.edu/csg/abecasis/Merlin/tour/parametric.html). 

 

Variant filtering 

Exome sequences were obtained from both parents and the patient. VCF files were converted 

into Excel files, all further filtering was done manually. We analyzed variants with quality class 1 

and 2 as described in chapter 3. In the families with a cardiomyopathy, we first selected a panel 

of known CM genes from the exome to specifically exclude mutations in these genes. Likewise, in 

family 4 mutations in known ciliopathy genes were specifically evaluated [11].  

We excluded all variants that were homozygous in one of the parents or in the unaffected sibling. 

Variants that were homozygous reference in the affected siblings were excluded. Only exonic and 

splicing variants were included, synonymous variants were excluded. Variants occurring with a 

frequency of <5% in the 1000 genomes project or with an unknown frequency were included.  
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1.1. Autosomal recessive inheritance   

We only retained candidate genes located in the linkage regions for which the parents and the 

unaffected sibling were either heterozygous or reference. 

 

1.1.1. Homozygous inheritance 

The patients were filtered against 72 local exomes, i.e. retaining variants for which only the 

patients were homozygous. In-silico predictions and manual curation of the remaining variants 

were done as described previously. 

 

1.1.2. Compound heterozygous inheritance 

Firstly, the patients were filtered against 72 local exomes, i.e. excluding variants that were 

homozygous in these control exomes. All heterozygous calls were included in the parents, 

homozygous calls were excluded in the unaffected sibling. Remaining variants were manually 

filtered according to one paternal and one maternal inherited variant occurring in the same gene. 

In-silico predictions and manual curation of the remaining variants were done as described above. 

 

1.2. X-linked hypothesis 

In the case of two male affected patients (family 5) the patients were first filtered against all in-

house (n=85) exomes, allowing the exclusion of local rare variants. All heterozygous variants 

occurring in other patients were thus excluded, only variants occurring in the X-chromosome 

were analyzed. Next, we filtered for variants that were wild-type (reference) in the father and 

heterozygous in the mother (obligatory heterozygous carrier). In a third step, we retained exonic 

nonsynonymous variants, exonic/splicing and intronic splicing variants occurring at less than 5 

positions from the splicing site. Next, we only retained variants occurring with a frequency of <1%, 

or with an unknown frequency, in the 1000 Genomes Project. In-silico predictions by Polyphen, 

Mutation Taster and SIFT were used with discretion as an additional filter when necessary, only 

variants predicted as damaging or disease causing by 2 or more in-silico tools were further 

analysed. The remaining list was manually curated with literature using UCSC, OMIM, Pubmed 

and Genetools. 
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1.3. Autosomal dominant inheritance due to germline mosaicism 

All variants were analysed and thus not only those in linkage regions, for the presence of a de 

novo variant shared by the two siblings. All heterozygous calls in the affected patients were 

included, only wild-type (reference) calls were included in the parents. We retained exonic 

nonsynonymous variants, exonic/splicing and intronic splicing variants occurring at less than 5 

positions from the splicing site. Next, we only retained variants occurring with a frequency of <1%, 

or with an unknown frequency, in the 1000 Genomes Project. In-silico predictions by Polyphen, 

Mutation Taster and SIFT were used with discretion as an additional filter when necessary, only 

variants predicted as damaging or disease causing by 2 or more in-silico tools were further 

analysed. The remaining list was manually curated with literature using UCSC, OMIM, Pubmed 

and Genetools. 

 

RESULTS 

In the three families with syndromic CHD in two siblings, no causative mutation was identified. 

Following the hypothesis of autosomal recessive inheritance, we identified several candidate 

genes carrying two (mostly) missense variants inherited from both parents in all families, or one 

variant inherited from the mother in family 5 with two affected boys according to the X-linked 

autosomal recessive hypothesis (Table 2).  For none of these genes, there was convincing 

evidence to pursue further functional testing. Under the hypothesis of de novo dominant 

inheritance with germline mosaicism in one of the parents, no good candidate genes were 

identified.  

 

Table 2. Candidate genes and variants identified in three unsolved families.  

Variants obtained in the possible inheritance mechanisms: autosomal recessive (AR), autosomal 

dominant (AD) and X-linked recessive (XL). Variants in the affected patients are either 

homozygous (Hom), heterozygous (Het) or hemizygous (Hemi). NS: nonsynonymous, FS: 

frameshift. In-silico scores are given as a score out of 3 as predicted by AV-SIFT, Polyphen and 

Mutation Taster. OMIM disease indicates whether mutations in this gene have been implicated 

in a recognized OMIM disorder.  
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Family Mode of inheritance Gene Mutation Mutation Variant Function In-silico (N) OMIM disease

CIDEC NM_001199551:exon7:c.C630T:p.H210H Hom NS- SNV 1
Lipodystrophy, partia l  
fami l ia l  type 5 (AR)

ENGASE NM_001042573:exon7:c.G962A:p.R321H Hom NS- SNV 3

EXPH5 EXPH5:NM_015065:exon6:c.T3931C:p.C1311R Hom NS- SNV 1
Epidermolys is  bul losa  
(AR)

PKD1 NM_001009944:exon45:c.C12176T:p.A4059V Het NS- SNV 1
Adult polycystic kidney 
disease 1 (AD)

PKD1 NM_001009944:exon10:c.C2081T:p.P694L Het NS- SNV 3
GSTM5 NM_000851:exon4:c.G199A:p.A67T Het NS- SNV 0
GSTM5 GSTM5:NM_000851:exon8:c.A649G:p.S217G Het NS- SNV 0

BCR NM_004327:exon19:c.3274_3275insCCGG:p.S1092fs Het FS- insertion 0
OR2T2 NM_001004136:exon1:c.C310T:p.L104F Het NS- SNV 0
TPTE2 NM_001141968:exon5:c.T98G:p.L33R Het NS- SNV 1
VCX3A NM_016379:exon3:c.475_504del:p.159_168del Het nonFS- deletion 0

CCDC138 NM_144978:exon4:c.G295T:p.D99Y Hom NS- SNV 1
COL15A1 NM_001855:exon11:c.C1592G:p.P531R Hom NS- SNV 2
CRIPAK NM_175918:exon1:c.295_323del:p.99_108del Hom FS- deletion 0

DNAJC13 NM_015268:exon43:c.A5018G:p.Y1673C Hom NS- SNV 0
HLA-DRB5 NM_002125:exon5:c.C780A:p.H260Q Hom NS- SNV 0

KRTAP5-10
NM_001012710:exon1:c.276_277insGGCTGTGGCTCCTG

TGGGGGCTCCAAGGGA:p.G92delinsGGCGSCGGSKG Hom nonFS- insertion 0
MAPK6 NM_002748:exon5:c.C868G:p.L290V Hom NS- SNV 2

PRAMEF13
PRAMEF13:NM_001024661:exon4:c.G1276A:p.D426N,
PRAMEF14:NM_001099854:exon4:c.G1132A:p.D378N Hom NS- SNV 0

PRDM9 PRDM9:NM_020227:exon11:c.C2042G:p.T681S Hom NS- SNV 0

TNXB TNXB:NM_019105:exon43:c.G12541A:p.A4181T Het NS- SNV 2

Ehlers -Danlos  S. due 
to Tenascin-X 
deficiency (AR; AD)

TNXB TNXB:NM_019105:exon43:c.G12514A:p.D4172N Het NS- SNV 2
KMT2C MLL3:NM_170606:exon18:c.G2963T:p.C988F Het NS- SNV 3
KMT2C MLL3:NM_170606:exon18:c.T2959C:p.Y987H Het NS- SNV 3
KMT2C MLL3:NM_170606:exon14:c.G2512A:p.G838S Het NS- SNV 3
KMT2C MLL3:NM_170606:exon7:c.C871T:p.L291F Het NS- SNV 2

AD OR4A16 NM_001005274:exon1:c.C958A:p.P320T Het NS- SNV 0
BEND2 NM_153346:exon5:c.G586A:p.E196K Hom NS- SNV 3
VSIG4 NM_007268:exon2:c.G274T:p.V92F Hom NS- SNV 2

SHROOM3 NM_020859:exon5:c.G3160T:p.V1054L Hom NS- SNV 2
COL4A6 NM_033641:exon42:c.C4232G:p.P1411R Hom NS- SNV 2

ARSD NM_001669:exon6:c.G992A:p.W331X Het stopgain SNV 2
ARSD NM_001669:exon6:c.G959A:p.G320D Het NS- SNV 2

PABPC3 NM_030979:exon1:c.G532A:p.E178K Het NS- SNV 2
PABPC3 NM_030979:exon1:c.G541A:p.A181T Het NS- SNV 2
PABPC3 NM_030979:exon1:c.G617A:p.R206H Het NS- SNV 2
PABPC3 NM_030979:exon1:c.C619T:p.L207F Het NS- SNV 2
PABPC3 NM_030979:exon1:c.A691G:p.K231E Het NS- SNV 2
PABPC3 NM_030979:exon1:c.C832T:p.R278C Het NS- SNV 3
PABPC3 NM_030979:exon1:c.C874T:p.Q292X Het stopgain SNV 2
PABPC3 NM_030979:exon1:c.C956T:p.T319I Het NS- SNV 2
PABPC3 NM_030979:exon1:c.G1033T:p.E345X Het stopgain SNV 2
PRSS3 NM_001197097:exon4:c.A367C:p.M123L Het NS- SNV 2
PRSS3 NM_001197097:exon4:c.G458C:p.C153S Het NS- SNV 3

GXYLT1 NM_173601:exon3:c.T444G:p.H148Q Het NS- SNV 3
GXYLT1 NM_173601:exon3:c.A378T:p.R126S Het NS- SNV 3
SLC25A5 NM_001152:exon2:c.A230C:p.N77T Het NS- SNV 2
SLC25A5 NM_001152:exon2:c.A235T:p.I79F Het NS- SNV 2
SLC25A5 NM_001152:exon3:c.G707C:p.R236P Het NS- SNV 3

NOTCH2 NM_024408:exon2:c.G112A:p.E38K Het NS- SNV 2
Alagi l le S (AD);  Hadju-
Cheney (AD)

PPIAL4G NM_001123068:exon1:c.C302T:p.A101V Het NS- SNV 2  

NOTCH2NL NM_203458:exon4:c.C338T:p.P113L Het NS- SNV 2
NOTCH2NL NM_203458:exon4:c.C473T:p.T158I Het NS- SNV 3
NOTCH2NL NM_203458:exon4:c.C563A:p.P188H Het NS- SNV 2
NOTCH2NL NM_203458:exon4:c.A586T:p.T196S Het NS- SNV 2

HLA-B NM_005514:exon4:c.G703A:p.A235T Het NS- SNV 1
VCX3B NM_001001888:exon2:c.C7T:p.P3S Het NS- SNV 0

BEND2 NM_153346:exon5:c.G586A:p.E196K Hemi NS- SNV 3

COL4A6 NM_033641:exon42:c.C4232G:p.P1411R Hemi NS- SNV 2

RP2 NM_006915:exon3:c.C844T:p.R282W Hemi NS- SNV 0

TFDP3 NM_016521:exon1:c.T101C:p.V34A Hemi NS- SNV 0

UTP14A NM_006649:exon9:c.G766A:p.V256M Hemi NS- SNV 0

VCX NM_013452:exon2:c.C7T:p.P3S Hemi NS- SNV 1

VSIG4 NM_007268:exon8:c.C1148T:p.T383I Hemi NS- SNV 0

VSIG4 NM_007268:exon2:c.G274T:p.V92F Hemi NS- SNV 2

ZNF81 NM_007137:exon5:c.C554T:p.S185L Hemi NS- SNV 1

3

AR

AD

4
AR

5

AR

AD

XL
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A detailed description of the results in Family 1 and 2 as well as the additional functional and animal 

model studies are found in the annex to this chapter, 4.1 and 4.2 respectively. 

In Family 1, we identified 6 candidate genes in the linkage regions with homozygous mutations in 

the patient, inherited from both parents, and for which the unaffected sibling was heterozygous or 

reference. This gene list was manually curated using functional data and genotype-phenotype 

correlations for the implicated genes. We thus identified a deleterious mutation in the ALMS1 gene 

as the most likely cause. No additional mutations were found in known hypertrophic or dilated 

cardiomyopathy genes. The affected siblings were homozygous for a frameshift deletion of one 

basepair in the ALMS1 gene NM_015120.4:c.7760delG, p.Cys2587Phefs*5 

(NC_000002.11:g.73716849delG or NG_011690.1:g.108964del). This is predicted to cause a 

premature stop at position 5 downstream. The unaffected sister and parents are heterozygotes.  

Results were confirmed by Sanger sequencing. 

In Family 2 WES was performed on both affected siblings and the unaffected sibling. After filtering 

the variants in the 1273 genes in the linkage regions, under a hypothesis of autosomal recessive 

inheritance, we identified in KIF20A a maternal missense variant (c.544C>T: p.R182W), and a 

paternal frameshift mutation, creating a premature stop codon (c.1905delT: p.S635Tfs*15). The 

missense variant c.544C>T: p.R182W was predicted to be damaging by in silico tools SIFT, Polyphen 

and MutationTaster. These observations suggest that both variants are likely to affect protein 

function. Further functional testing was thus initiated to confirm pathogenicity, as described in 

Chapter 4.2. 
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DISCUSSION 

In this project, we were able to identify the genetic cause in 2 out of 5 small, likely autosomal or X-

linked recessive  families with an almost certain monogenetic cause of a syndromic CHD or distinct, 

lethal type of severe cardiomyopathy.  We thus identified two novel genetic causes of 

cardiomyopathy. First, mitogenic cardiomyopathy is the severe end of the spectrum of a well-known 

disorder, Alström syndrome. This is a very rare disorder (estimated incidence <1/1 000 000) [12], 

and cardiomyopathy is a known feature. In many academic hospitals targeted WES panels exist to 

screen for most known cardiomyopathies. These gene panels include known genes in hypertrophic-

, dilated-, restrictive- and Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC). However, the 

ALMS1 gene usually is not in this panel, and therefore, this diagnosis would be missed.  

Next, we identified a novel type of restrictive cardiomyopathy of the right ventricle, and we provide 

extensive genetic and functional evidence that near complete loss-of-function mutations in the 

KIF20A gene cause this phenotype.  

In three families with a distinct phenotype, we did not identify a causal mutation. Several candidates 

were identified, but for none of them, functional knowledge on the gene indicated a causal mutation 

fitting the phenotype. One of the limitations is that these are unique families. The replication of a 

mutation in the same gene in unrelated individuals with the same phenotype is the cornerstone of 

gene identification. When no other families are known with the same disorder, replication is not 

possible, and we rely on functional tests. However, given the often large number of remaining 

candidate genes, this was not obvious.  

The question then remains how the genetic cause in these families will be resolved in the future? 

First, it is possible that, as for the mitogenic cardiomyopathy, other families will emerge with 

mutations in one of the implicated genes. Large collaborative studies generate a vast amount of 

genetic data, which can be interrogated through tools such as Gene Matcher [13, 14]. Also, the 

Deciphering Developmental Disorders consortium provides, in a Decipher Research track, all 

mutations found in genes for which currently there is not yet sufficient evidence that they are 

indeed developmental disorder genes. As an example, in the Decipher research track, two splice 

mutations are present in the MEIS2 gene, in patients with ID and cleft palate. Contacting the 

contributing clinicians can thus advance knowledge in this field. No mutations in KIF20A are listed. 

An alternative explanation is that the true genetic cause has been missed by the used technology. 

This is discussed in more detail in the final discussion of this thesis. WES is far from perfect to identify 
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all exonic mutations. In these three families, the average coverage of 20X was obtained in 82% of 

the target region (range 40-94%) meaning that around 18% of exons are not sufficiently covered. In 

addition, indels are often not called appropriately. Moreover, CNV’s too small to be detected by 

array-CGH but too large to be detected in WES will also be missed. We anticipate that future re-

assessment of these families using WGS has a good chance of identifying the causative mutation.  
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ABSTRACT 

Background: Two siblings from consanguineous parents of Turkish descent presented with isolated 

dilated cardiomyopathy, leading to early death in infancy. The diagnosis of mitogenic 

cardiomyopathy was made histologically. 

Methods and results: Linkage analysis combined with exome sequencing identified a homozygous 

deleterious mutation in the ALMS1 gene as the cause of this phenotype. 

Conclusions: Alström syndrome is characterized by a typically transient dilating cardiomyopathy in 

infancy, suggesting that mitogenic cardiomyopathy represents the extreme phenotype, resulting 

in demise before the other clinical symptoms become evident. This observation further illustrates 

the role of ALMS1 and cell cycle regulation.  

KEYWORDS  

Cardiomyopathy, Alström syndrome, ALMS1, exome sequencing, ciliopathy 
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INTRODUCTION 

Cardiomyopathies are a heterogeneous group of  primary myocardial disorders in which the heart 

muscle is structurally and functionally abnormal, in the absence of other causes including coronary 

artery disease, hypertension, valvular or congenital heart disease [1].The annual incidence of 

pediatric cardiomyopathy is low, 1/100 000 children, with the highest incidence in the first year of 

life [2, 3]. Four major types are distinguished, i.e., dilated, hypertrophic, restrictive, and 

arrhythmogenic right ventricular cardiomyopathy [4]. Other unclassified types, which do not meet 

the criteria of one of the above, include endocardial fibroelastosis and ventricular non-

compaction.  

Mitogenic cardiomyopathy is an extremely rare type of dilated cardiomyopathy leading to death in 

early infancy. To date, only 6 cases have been reported in 4 families [5, 6]. Zerbini et al. described 

this condition in an 8-day-old infant, who died suddenly. Pathological examination revealed 

normal cardiac anatomy. The right ventricle was slightly dilated and endocardial fibroelastosis was 

present. Histology of the myocardium showed numerous mitoses and frequently enlarged 

myocardial nuclei with condensed chromatin forming a serrated thread running in the long axis, 

termed caterpillar nuclei. They observed an increased DNA ploidy of myocardial cells.  The 1-

month-old sibling of this patient also presented with heart failure and severe, dilated 

cardiomyopathy. An endomyocardial biopsy revealed endocardial fibroelastosis, but no increased 

mitoses. DNA ploidy analysis, on the other hand, showed an increased ploidy of the myocardial 

cells.  This patient responded positively to intensive treatment; however, no long term follow-up 

data are available. In 2010 Chang et al. described 5 cases with an identical disorder, including 2 

pairs of siblings. They all presented during early infancy with symptoms of cardiac failure and died 

soon thereafter. There were no associated extracardiac anomalies. Autopsy showed an enlarged, 

dilated heart, mostly ventricular, with endocardial fibroelastosis in all cases. Distinct findings were 

nuclear hypertrophy of the cardiomyocytes and a markedly increased mitotic activity with a 

proliferative index of 10 to 20% (normal < 1%), as well as caterpillar nuclei. In 1 of the 2 pairs of 

siblings there was parental consanguinity. This, and the observation of affected males and females 

strongly suggested autosomal recessive inheritance. We here report a novel family with an 

identical disorder. By a combination of linkage analysis and exome sequencing, we identify 

mutations in the ALMS1 gene as the cause of this distinct type of cardiomyopathy.  

 



94 
 

PATIENT DATA 

Patient 1  

The index is the second child of healthy, consanguineous parents of Turkish descent. He was born 

at 41 weeks of gestation after an uneventful pregnancy. Weight was 3200g (3rd-10th centile). He 

presented at age 20 days with excessive crying and feeding difficulties. On clinical examination, an 

inguinal hernia was noted. On reducing the hernia, cardio-circulatory arrest occurred. He was 

resuscitated and transferred to the university hospital. Despite continuous and prolonged 

resuscitation, the infant demised. Postmortem echocardiography revealed a structurally normal 

heart.  

The child was not dysmorphic. Weight was 4180 g (50th centile), length 56,5 cm (75th-90th centile) 

and head circumference 37,5 cm (50th centile). Pathological examination revealed signs of 

congestive cardiac failure (Figure 1). The weight of the heart was 31,1g (75th-95th centile) which is 

within normal range for age[7]. There was cardiomegaly, caused by globular dilatation of the left 

ventricle [8]. The endocardium was pale and thickened, indicative of endocardial fibroelastosis, 

which was confirmed histologically.  Apart from this “dilated cardiomyopathy”, the heart was 

structurally normal, including normal origin of the coronary arteries and normal aortic and mitral 

valves. There were no signs of non-compaction cardiomyopathy. Histology showed no signs of 

myocarditis, nor was there any evidence for a metabolic disorder. Myofibrillar disarray was 

absent. The most striking phenomenon was a marked mitotic activity in the cardiac myocytes 

(Figure 2). The myocardium also showed myocyte nuclear hypertrophy with the frequent 

occurrence of binuclear and even trinuclear myocytes. Some myocytes contained caterpillar nuclei 

(Figure 3), thus named due to condensed chromatin forming a serrated thread in the long axis. 

Immunohistochemical staining for Ki-67 (Mib1) showed a markedly increased proliferative activity 

of the myocardium. The proliferation index was 20% (normal value <1%). These findings lead to 

the diagnosis of mitogenic cardiomyopathy. 
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Left ventricular dilatation 

 

Figure 1. This specimen (patient 1) of the left ventricle clearly shows left ventricular dilatation and 

endocardial fibroelastosis. The heart was structurally normal. 

Increased myocardial proliferation 

 

Figure 2. This image shows markedly increased proliferative activity of the myocardium. 
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Caterpillar nuclei 

 

Figure 3. Caterpillar nuclei with condensed chromatin 

 
Patient 2 

Because of the high recurrence risk, the following pregnancy was closely followed. Repeated 

prenatal cardiac ultrasound investigations remained normal. A female infant was born at 41 weeks 

gestation, weighing 2840 g (3rd-10th centile). Early neonatal echocardiography was normal. 

However, at day 19, she was admitted with overt heart failure. Echocardiography (figure 4) 

revealed a dilated cardiomyopathy with left ventricular inner dimension at end-diastolic (LVIDd) of 

25mm (normal 12.9-19.1mm) [8]. There was endocardial fibroelastosis and severe mitral and 

tricuspid regurgitation. Cardiac function was poor, with a fractional shortening (FS) of 12% (normal 

≥30%) and retrograde pulmonary hypertension. Despite respiratory and circulatory support, she 

progressively deteriorated and demised at the age of 22 days. No autopsy was performed.   

Family history was otherwise negative; cardiac investigations of both parents and the 5 year old 

sibling were normal (figure 4). Informed consent was given by the family for further genetic 

studies. 
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Echocardiography 

 

Figure 4. Echocardiography using M-mode showing poor cardiac function (FS 12%, normal >30%) 

and dilated left ventricle. Left ventricle posterior wall at end- diastole (LVPWd), left ventricle inner 

dimension at end-diastole (LVIDd), Interventricular septum at end-diastole (IVSd), Left ventricular 

fractional shortening (FS). 

 

METHODS 

Linkage analysis 

Genomewide parametric linkage analysis with Merlin software was performed [9]. A dense SNP 

marker set derived from the 250k Affymetrics SNP typing platform was used in a recessive model. 

Genotyping was done on DNA extracted from peripheral white blood cells, obtained from the 

parents and both the unaffected and affected siblings.  

 

Exome analysis 

Library construction for all samples were prepared using TruSeq DNA Library Preparation Kit 

(Illumina, Inc., San Diego, CA, USA) in which platform-specific adaptors and unique DNA indexes 

were ligated. For each sample, 1 µg genomic DNA was sheared by sonication to approximately 

300bp fragments, followed by end-repair, adenylation and adapter ligation steps. DNA sequencing 

libraries were subsequently enriched with the SeqCap EZ Human Exome Library v3.0 (Roche, 

NimbleGen), and 2 × 100-bp paired-end reads were generated on the Illumina HiSeq2000 platform  
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with 3-4 exome-seq samples pooled per lane of a sequencing flow-cell.  Sheared DNA, whole 

genome libraries and enriched exome-seq libraries were validated using DNA-1000 chips on the 

BioAnalyser (Agilent), and library concentrations were determined using the dsDNA Broad Range 

Assay using the Qubit (Invitrogen). 

Data analysis was done using commercial and in-house developed software (Genomics Core/UZ 

Leuven). Exome sequences were obtained from both parents, patient 1 and the unaffected sister.  

Filtering was done with a High-quality depth of 5. From the variant files, we only retained variants 

in genes from the linkage regions. Additional mutations in all known hypertrophic and dilated 

cardiomyopathy genes were excluded. All homozygous calls were excluded in the parents and the 

unaffected sibling, reference calls were excluded in the affected sibling. According to Ensembl 

(www.ensembl.org) only exonic and splicing variants were included. Synonymous variants were 

excluded. Variants occurring with a frequency of <1% in the 1000 genomes project or with an 

unknown frequency were included. All remaining calls were checked for correct calling using 

Integrative Genomics Viewer (IGV, Broad Institute, Cambridge, MA, USA). 

RESULTS 

Linkage analysis 

In 8 regions the maximum LOD score of 1.9 was reached. All together these regions were spanning 

76, 769 163 Mb and contained 487 Human Genome Organization (HUGO) genes.  

 

Exome sequencing 

After variant filtering as outlined in the methods section, we identified 6 candidate genes in the 

linkage region with homozygous mutations in the patient, inherited from both parents, and for 

which the unaffected sibling is heterozygous or reference (supplementary table 1S). This gene list 

was manually curated using functional data and genotype-phenotype correlations for the 

implicated genes. We thus identified a deleterious mutation in the ALMS1 gene as the most likely 

cause. No additional mutations were found in known hypertrophic or dilated cardiomyopathy 

genes. 

Results were confirmed by Sanger sequencing (Figure 2S). The two affected siblings are 

homozygous for a frameshift deletion of one basepair in the ALMS1 gene 

NM_015120.4:c.7760delG, p.Cys2587Phefs*5 (NC_000002.11:g.73716849delG or 

NG_011690.1:g.108964del). This is predicted to cause a premature stop at position 5 downstream. 

The unaffected sister and parents are heterozygotes. 
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DISCUSSION 

We report a novel family with an extremely rare and lethal disorder: mitogenic cardiomyopathy. It 

is characterized by infantile-onset dilated cardiomyopathy resulting in irreversible heart failure 

and death. Histologically, there is a dramatically increased mitotic activity in the cardiomyocytes. 

Given the likely autosomal recessive inheritance and parental consanguinity in this family, the 

combination of linkage analysis and exome sequencing allowed us to identify mutations in the 

ALMS1 gene as the most likely cause of the condition in this family. The homozygous mutation in 

ALMS1 was located in a 3, 435 478 MB region on chromosome 2 (Supplemental figure 1S).  

The cardiac phenotype of dilated cardiomyopathy, although more severe, fits with Alström 

syndrome. In Alström syndrome, more than 60% of individuals develop congestive heart failure, 

most often dilated cardiomyopathy. An episode of heart failure due to dilated cardiomyopathy 

occurs in about 40% of cases during early infancy, between 2 and 16 weeks of age [10]. In most 

cases the initial poor cardiac function improves and patients remain stable for many years. In 

about 15% a recurrence of restrictive heart failure occurs during adolescence or adulthood. In 

addition, 20% of patients present in adolescence or adulthood with progressive restrictive 

cardiomyopathy.  Besides this interfamilial variability, pronounced intra-familial variability has 

been observed regarding the occurrence and severity of  cardiomyopathy [11]. Thus, the severe 

dilated cardiomyopathy observed in the present family can be regarded as an extreme 

presentation of Alström syndrome. The clinical presentation in these infants is dominated by heart 

failure, at an age when the additional manifestations such as nystagmus were not yet evident. For 

this reason, the diagnosis of Alström was not suspected. It is currently not known whether 

mitogenic cardiomyopathy is a feature of Alström syndrome related to dilated cardiomyopathy 

during infancy. We were unable to find reports or pathological data in infants with proven Alström 

syndrome. Also, we currently do not know whether the other cases with mitogenic 

cardiomyopathy are also caused by mutations in ALMS1. No biological material could be obtained 

from the previously reported cases.  

There is no immediate explanation for the more severe phenotype observed in this family. On the 

one hand, this may be due to ascertainment bias.  On the other hand, the marked intra-familial 

variability, and interfamilial variability observed in individuals sharing the same ALMS1 mutations 

suggests the presence of genetic and/or environmental modifiers [12]. The mutation occurs in a 

region where many other mutations have been reported before, and, similarly to most of them 
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result in a (predicted) truncated protein [13]. Additional mutations in known hypertrophic or 

dilated cardiomyopathy genes were excluded. 

The present observation indicates a link between ALMS1 and the mechanisms underlying the 

neonatal structural and functional changes in the heart. In the different developmental stages 

from fetus to adult, the ventricular myocardium differs morphologically, quantitatively and 

qualitatively in function and structure. In the adult myocardium the myocytes are organized in 

parallel and there is little interstitial tissue between myocytes. Polyploidy is frequently noted and 

the nucleus is relatively small. In the fetal heart, myocytes are less well organized and the 

intercellular space is greater. Nuclei are large and polyploidy is unusual. In the immediate weeks 

following birth, a rapid decrease in myocyte mitosis is noted; essentially all growth beyond the 

early neonatal period is due to hypertrophy. The stimulus is the normal developmental increase in 

mural stress and work. The workload of the left ventricle increases postnatally due to increased 

left ventricular output. This causes a rapid increase in thickness and weight of the left ventricle 

due to an increase in myocytes [14, 15]. 

The increased mitotic activity observed in cardiomyocytes in the present condition suggests a 

defect in cell cycle regulation. ALMS1 localizes to centrosome and to the ciliary basal bodies. There 

is a well-established role of the primary cilium in regulating cell cycle [16]. Of interest, in a mouse 

model for Alström syndrome, carrying a homozygous truncating mutation in exon 10 (alms1 
L2131X/L2131X), [17] loss of cilia in the kidney was observed in older mice, associated with increased 

proliferation and cyst formation as well as apoptosis. In these mice, no cardiac phenotype was 

described. Also in the heart, cilia may play a role in cardiomyocyte development and proliferation.  

Abolishing the function of the primary cilium in the pluripotent mouse stem cells P19.CL6 prevents 

further differentiation of these cells into beating cardiomyocytes [18].  

Reaching a genetic diagnosis in rare disorders remains a challenge. We illustrate that even in a 

single family with only two affected individuals, the identification of the underlying defect is 

feasible, using a combination of the sophisticated genetic tools. As in this family, we anticipate 

that the unbiased whole exome screens for mutation is likely to reveal further phenotypic 

heterogeneity in previously well delineated monogenic conditions.  
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SUPPLEMENTAL MATERIAL 

Linkage region 

 

Figure 1S. Linkage region in chromosome 2. 
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Sanger sequencing 

 

Figure 2S. Sanger sequencing results showing a homozygous deletion of one basepair in the 

ALMS1 gene in the two affected siblings (3, 4). The parents are heterozygous (1, 2). 
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ABSTRACT 

Aims 

Congenital or neonatal cardiomyopathies are commonly associated with a poor prognosis and 

have multiple etiologies. In two siblings, a male and female, we identified an undescribed type 

of lethal congenital restrictive cardiomyopathy affecting the right ventricle. We hypothesized 

a novel autosomal recessive condition. To identify the cause, we performed genetic, in vitro 

and in vivo studies.  

 

Methods and Results 

Genome-wide SNP typing and parametric linkage analysis was done in a recessive model to 

identify candidate regions. Exome sequencing analysis was done in unaffected and affected 

siblings. In the linkage regions, we selected candidate genes that harbor two rare variants with 

predicted functional effects in the patients and for which the unaffected sibling is either 

heterozygous or homozygous reference. We identified two compound heterozygous variants 

in KIF20A; a maternal missense variant (c.544C>T: p.R182W) and a paternal frameshift 

mutation (c.1905delT: p.S635Tfs*15). Functional studies confirmed that the R182W mutation 

creates an ATPase defective form of KIF20A which is not able to support efficient transport of 

Aurora B as part of the chromosomal passenger complex. Due to this Aurora B remains 

trapped on chromatin in dividing cells and fails to translocate to the spindle midzone during 

cytokinesis. Translational blocking of KIF20A in a zebrafish model resulted in a cardiomyopathy 

phenotype. 

 

Conclusion 

We identified a novel autosomal recessive congenital restrictive cardiomyopathy, caused by a 

near complete loss-of-function of KIF20A. This finding further illustrates the relationship of 

cytokinesis and congenital cardiomyopathy.  

 

Keywords 

Congenital cardiomyopathy, KIF20A, cytokinesis, exome sequencing, linkage analysis 
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INTRODUCTION 

Cardiomyopathies are a heterogeneous group of primary myocardial disorders in which the 

heart muscle is structurally and functionally abnormal, in the absence of other causes such as 

coronary artery disease, hypertension, valvular or congenital heart disease [1]. The annual 

incidence of paediatric cardiomyopathy is low, 1/100 000 children, with the highest incidence 

in the first year of life [2, 3].  

Congenital or neonatal cardiomyopathies are commonly associated with a poor prognosis and 

have multiple etiologies. These etiologies differ considerably from cardiomyopathies in older 

children and adults[4]. Congenital cardiomyopathies can be divided into different groups 

according to the clinical presentation and echocardiographic criteria: hypertrophic (HCM), 

dilated (DCM), restrictive (RCM), or unclassified including ventricular non-compaction 

cardiomyopathy and endocardial fibroelastosis. Genetically, most cardiomyopathies are 

caused by pathogenic mutations in genes coding for sarcomeric proteins [5, 6].  

The etiological landscape in congenital hypertrophic cardiomyopathy is heterogeneous; 

including various cellular mechanisms such as storage of metabolites as in Pompe disease, 

disturbed energy metabolism (e.g. fatty acid oxidation defects and mitochondrial diseases), 

altered signal transduction pathways (e.g. rasopathies due to mutations in genes altering the 

Ras subfamily and mitogen-activated protein kinases as in Noonan syndrome) or altered cell 

proliferation (e.g. as in Beckwith-Wiedemann syndrome).  Congenital dilated cardiomyopathy 

is most frequently caused by myocarditis, but mitochondrial diseases can also present as DCM.  

Restrictive cardiomyopathy (RCM) is very rare and mostly affects older people. It accounts for 

2.5-5% of all diagnosed cardiomyopathies in children and occurs in less than 1 per million 

children. It is characterized by the replacement of normal heart muscle by abnormal tissue, 

such as scar tissue which makes the ventricles become stiff and rigid [7, 8]. The systolic 

function is usually normal, but the diastolic function and relaxation of the ventricles are 

abnormal. The stiff ventricles do not allow the atria to empty normally, resulting in dilated 

atria and signs of heart failure. Often, there can be a lack of symptoms which makes the 

diagnosis difficult. Therapeutic options are limited resulting in a high morbidity and mortality. 

Several systemic and myocardial diseases, e.g. amyloidosis, metabolic diseases, sarcoidosis 
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and scleroderma, are associated with RCM; but idiopathic RCM remains the most common 

[9].  

We report a small family with an undescribed type of congenital cardiomyopathy resulting in 

a lethal restrictive cardiomyopathy. Clinical, genetic and functional studies were performed 

which led to the identification of a near complete loss-of-function of KIF20A as the most likely 

cause of this disorder. 

 

CLINICAL DESCRIPTION 

We present a small Caucasian family with three children (Figure S1). The parents are not 

consanguineous. Two of the children, one male (II-2) and one female (II-3), were diagnosed in 

late fetal life with a congenital heart defect categorized as restrictive cardiomyopathy of the 

right ventricle (RV). In the male index patient, the diagnosis of a small RV with severe 

pulmonary stenosis was made at the postmenstrual age (PMA) of 35 weeks. Due to secondary 

hydrops foetalis, with chylothorax and ascites, labour was induced at 35 weeks and 2 days. At 

birth, weight was 2400g (25th-50th centile), length 48cm (75th centile) and head circumference 

31,8cm (25th-50th centile). Postnatal echocardiography (Figure 1) confirmed the diagnosis of a 

bipartite RV with agenesis of the apex, a functional pulmonary stenosis, moderate pulmonary 

insufficiency (grade 2/4) and severe tricuspid insufficiency (grade 3/4). Due to a pulmonary 

circulation dependent on a patent ductus arteriosus, IV prostaglandin was started. On day 1 

percutaneous dilatation of the pulmonary valve was performed and the ductus arteriosus was 

stented. On day 5 a Rashkind balloon septostomy of the intra-atrial septum was performed. 

Due to persistent ascites, pronounced hepatomegaly and increased transaminases, an MRI of 

the liver and liver biopsy was performed at 40 days postnatal age. This showed 

billirubinostasis, hypoplasia of the portal veins and associated hyperplasia of the portal 

arteries. A preliminary diagnosis of a ductal plate abnormality was made. During the 

subsequent weeks, the heart function of both ventricles progressively decreased. At the age 

of 3 months the decision was made to start palliative care and the patient demised at the age 

of 93 days. Autopsy confirmed the cardiac diagnosis. There was pronounced sub-endocardial 

to transmural ischemic fibrosis of the myocardium. The myocardial tissue was hypertrophic 

with hydropic swelling and myocytolysis. The endocardium showed fibrous thickening. The 
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myocardium of the left ventricle (LV) was grossly normal, except for endocardial fibrosis which 

was clearly less pronounced compared to the RV. Pronounced chronic venous congestion of 

the liver was noted with cardiac fibrosis. The venous centrolobular walls were severely 

thickened with formation of centro-central fibrous septae. Ductal proliferation was present, 

but ductal plate malformation could not be confirmed given the normal central bilious ducts 

in the larger portal fields.  

 

In a following pregnancy, at the PMA of 32 weeks, the diagnosis of restrictive right ventricular 

cardiomyopathy with RV dysfunction was made in the female fetus. She was born at the PMA 

of 37 weeks. Her weight, length and head circumference at birth were within normal range; 

3,450 kg (25th-50th centile), 49,5cm (10th-25th centile) and 33,8 cm (3rd-10th centile) 

respectively. She was admitted in NICU due to cyanosis and cardiac decompensation with 

pronounced ascites. Postnatal echocardiography confirmed the diagnosis of a restrictive 

cardiomyopathy. The pulmonary valve was morphologically normal, but decreased 

anterograde flow as well as moderate tricuspid insufficiency was present (grade 2/4) 

secondary to RV dysfunction. No hepatic abnormalities were present. In the following weeks 

the heart function progressively decreased, at the age of 71 days (2 months) the patient 

demised. An autopsy was not performed.  
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Figure 1. Echocardiography of index patient 

Postnatal echocardiography of patient II-2 showing a bipartite RV with agenesis of the apex. 

Marked dilatation of the RA due to severe tricuspid insufficiency (grade 3/4). RA, right atrium; 

RV, right ventricle; LV, left ventricle; LA, left atrium. 

 

METHODS 

Linkage Analysis  

Genotyping was done on DNA extracted from peripheral white blood cells, obtained from the 

parents and both the unaffected and affected siblings. A dense SNP marker set derived from 

the 250k Affymetrics SNP typing platform was used in a recessive model. Genome wide 

parametric linkage analysis with Merlin software was performed 

(http://www.sph.umich.edu/csg/abecasis/Merlin/tour/parametric.html). 
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Whole Exome Sequencing  

Whole exome sequencing was done on both patients and the unaffected sibling. Genomic 

DNA was sheared by sonication, platform-specific adaptors were ligated, and the resulting 

fragments were size selected. The library was captured using the SeqCap EZ Human Exome 

Library v2.0 (Roche NimbleGen®), and 2 x 76 bp paired-end reads were generated on a 

HiSeq2000 (Illumina®). Reads that did not pass Illumina’s standard filters were removed prior 

to alignment. Remaining reads were aligned to the reference human genome (hg19), using 

the Genome Analysis ToolKit (GATK) pipeline. After duplicate removal, local realignment and 

base quality score recalibration, the data were used for variant calling with GATK Unified 

Genotyper (2.4-9). Annovar was used for functional annotation of detected variants. Quality 

filtering was applied by excluding variants found in less than 5 reads and variants detected in 

less than 15% variant reads.  

 

From the variant files, we only retained variants in genes from the linkage regions. Exonic 

variants and only intronic variants located less than 6 bp from the intron-exon boundary were 

included. Synonymous variants were excluded. Variants occurring with a frequency of <1% in 

the 1000 genomes project or with an unknown frequency were included. Variant filtering was 

done under the hypothesis of autosomal recessive inheritance, thus retaining only 

homozygous or compound heterozygous variants in both affected siblings, but not in the 

unaffected sibling. All remaining calls were checked for correct calling using Integrative 

Genomics Viewer (IGV, Broad Institute, Cambridge, MA, USA). 

 

Real-Time Quantitative PCR  

Primary fibroblasts from patients and unrelated controls were grown from skin biopsy and 

cultured in Dulbecco’s modified Eagle medium DMEM/F12 (Life Technologies®) supplemented 

with 10% fetal bovine serum (Clone III, HyClones), 1% streptomycine and 0,02% Fungizone at 

37°C under 5% CO2.  

The PCR was performed for KIF20A (GenBank NM_005733) and the house-keeping gene 

GAPDH (Glyceraldehyde 3-phosphate dehydrogenase, GenBank NM_002046), which was used 

as an endogenous control for normalization. qPCR primers were designed using Genscript 
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software (www.genscript.com/ssl-bin/app/primer). All primers were synthetized by 

Integrated DNA Technologies. 

 

Reagents and antibodies 

General laboratory chemicals and reagents were obtained from Sigma-Aldrich and Thermo 

Fisher Scientific. Sheep antibodies were raised to the KIF20A motor domain (N) or neck plus 

C-terminus (C) domains. Rabbit antibodies to KIF4A, KIF23, PRC1 and KIF23 pS911 peptide 

were described previously [10-13]. Specific antibodies were purified using the antigens 

conjugated to Affi-Gel 15, eluted with 0.2 M glycine-HCl, pH 2.8, and then dialyzed against PBS 

before storage at −80°C. Commercially available antibodies were used to AIM1 (mouse 

611083; BD). Affinity-purified primary and secondary antibodies were used at a final 

concentration of 1 µg/ml. Secondary antibodies conjugated to Horseradish Peroxidase (HRP) 

were obtained from Jackson ImmunoResearch Laboratories, Inc. Secondary antibodies for 

microscopy conjugated to Alexa Fluor 488, 555, and 647 were obtained from Invitrogen. DNA 

was stained with DAPI (Sigma-Aldrich). 

 

Molecular biology 

Human KIF20A was amplified directly from human testis cDNA. The KIF20A R182W mutant 

was created using QuikChange mutagenesis according to the instructions from Agilent 

Technologies. Mammalian expression constructs for N-terminally GFP-tagged KIF20A was 

made using pcDNA5/FRT/TO vector (Invitrogen). Hexahistidine-tagged bacterial expression 

constructs for the motor domain (1-507) of wild type KIF20A or R187W KIF20A were made in 

pQE32 (QIAGEN). 
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Cell culture and microscopy 

HeLa cells were cultured in DMEM containing 10% (vol/vol) bovine calf serum (Invitrogen) at 

37°C and 5% CO2. For synchronization, cells were treated for 18 hours with 2mM thymidine, 

washed three times in PBS, and twice with growth medium. For plasmid transfection and 

siRNA transfection Mirus LT1 (Mirus Bio LLC) and Oligofectamine (Invitrogen) were 

respectively used. The siRNA duplexes used targeted the following sequences: control 5′-

CGTACGCGGAATACTTCGA-3′, KIF20A 3’-UTR 5′-CCACCTATGTAATCTCATG-3′. Microscopy was 

performed as described previously[13]. 

 

Protein expression and purification 

The motor domains of KIF20A wild type and R187W were expressed in Escherichia coli strain 

JM109 and purified after induction for 3 hours with 0.5mM IPTG. Cell pellets were washed 

once in ice-cold PBS, and then lysed in 20 ml of IMAC20 (20mM Tris-HCl, pH 8.0, 300mM NaCl, 

20mM imidazole) and protease inhibitor cocktail (Sigma-Aldrich) for 20 minutes on ice. Cell 

lysis was performed using an Emulsifex C5 cell breaker system (Avestin Europe GmbH). Cell 

lysate was clarified by centrifugation and loaded onto a 1-ml HisTrap FF column (GE 

Healthcare) at 0.5 ml/min. The column was then washed with 30 ml of IMAC20, and eluted 

with a 20-ml linear gradient from 20 to 200mM imidazole in IMAC20 collecting 1 ml fractions. 

Peak fractions were buffer exchanged using 5 ml Zeba Desalt Spin columns (Perbio) into TND 

(20mM Tris-HCl, pH 8, 300mM NaCl, and 1mM DTT). Protein samples were snap-frozen in 15-

µl aliquots and stored at −80°C for further use. 

 

Kinesin motor ATPase assays 

A commercial enzyme–linked inorganic phosphate assay was used to measure kinesin ATPase 

activity (Cytoskeleton, Inc.) as described previously[13]. In brief, a microtubule premix was 

created at room temperature by mixing 1ml of reaction buffer (15mM PIPES-KOH pH 7 and 

5mM MgCl2), 10µl of 2mM paclitaxel, 80µl of preassembled microtubules (1mg/ml tubulin, 

15mM PIPES-KOH pH 7, 5mM MgCl2, 1mM GTP, and 20µM paclitaxel), 240µl of 1mM 2-amino-

6-mercapto-7-methylpurine riboside, and 12µl of 0.1U/µl purine nucleoside phosphorylase. 

Reactions were set up in 96-well plates by mixing the protein of interest in a total volume of 

7.5µl TND with 147.5µl of the microtubule premix at room temperature. To start the assay, 
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10µl of 10mM ATP was added to each well. Final assay volume was 165µl of 12mM PIPES-KOH 

pH 7, 4mM MgCl2, 0.61mM ATP, and 14.5mM NaCl. This was then rapidly transferred to a 37°C 

plate reader (Tristar LB 941; Berthold Technologies) set to read absorbance at 360nm. 

Readings were acquired every 30 seconds during 1 hour. An inorganic phosphate standard 

curve was created in the same assay buffer and used to convert absorbance to nmol 

hydrolysed ATP. 

 

Zebrafish model 

A. Zebrafish maintenance and transgenic lines.   

Wild-type, Tg(kdrl:EGFP)s843  and double transgenic Tg(gata1:DsRed2;kdrl:EGFP) zebrafish 

lines were maintained as previously described[14]. Embryos were collected by natural matings 

of zebrafish adults and incubated in egg water at 28.5°C according to The Zebrafish Book. 

Embryos at different developmental stages were presented as hours post fertilization (hpf) or 

days post fertilization (dpf)[15]. 

 

B. Antisense morpholino oligonucleotides and zebrafish embryo microinjection.  

The translational blocking morpholino oligomer (MO) for zebrafish kif20a was designed and 

ordered from Gene-Tools, LLC (OR, USA). Its sequence is 5’-

GCATGGAGACGCCAGAGCCATTATA-3’. Lyophilized MOs were diluted in water according to the 

protocol of Gene Tools. Stocks were further diluted to different working concentrations with 

phenol red added as indicator. 15 ng kif20a-MO was injected into 1-2 cell stage embryos.  Co-

injection of p53 MO was performed to rule out a possible toxicity of MO off-target effect. The 

dose dependent effect of kif20a morpholino was performed by injection of different 

concentrations of MO into 1-2 cell stage embryos. The efficiency of MO on inhibiting kif20a 

expression was checked by Western blot assay. The antibody for human KIF20A protein was 

home-made by immunizing sheep and purified. The proteins were extracted from 48 hpf 

embryos in RIPA buffer (Thermo Scientific, USA) with protease inhibitor (Roche, Germany). 

The same amount of protein samples were loaded in the Bis-Tris 4–12% SDS-PAGE denaturing 

gel (The sequence of antigen will be provided upon request.).  
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For the rescue experiment embryos were injected with kif20a-MO together with 10 pg 

pcDNA3.1 plasmids carrying either a human KIF20A WT cDNA or KIF20A R182W cDNA 

fragment. Cardiac phenotypes were analyzed at 3dpf.  

C. Imaging and data analysis. 

Live embryos were photographed with a Nikon SMZ18 microscope. Confocal images of live 

embryos embedded in 0.9% low melting agarose were made with a Nikon Spinning-Disk 

confocal microscope, images were generated by ImageJ software. 

 

D. Zebrafish embryonic cardiac function evaluation. 

Live confocal imaging was done to quantify cardiac function using a Nikon Spinning-Disk 

confocal microscope. Five to nine embryos of WT and kif20a-atgMO respectively were imaged 

at 72 hpf (day 3) and 96 hpf (day 4). This was repeated totaling 54 zebrafish larvae, respectively 

28 WT and 26 kif20a-atgMO. The atrium and ventricle was imaged separately, images were 

processed by ImageJ software. Heart rate was calculated by counting the number of beats in 

15 seconds and multiplying by 4 to obtain beats per minute. Fractional shortening (%) was 

calculated using the formula (100)(width at diastole–width at systole)/(width at diastole) for 

the atrium and ventricle as described before by Hoage et al[16]. Statistical analysis was done 

using SPSS software. P-values were calculated using Mann-Whitney U test, the significance 

threshold was set at .001. 

E. Histology 

Embryos at 4dpf were stored in 4% PFA in PBS and transferred to warm DEPC treated saline 

on a heating plate. Sequential transfer of embryos from the saline through the increasing 

agarose concentrations (0.25% - 1.5%) was done every 10 seconds on a heating plate of 60°C. 

The final 1.5% agarose is cooled to room temperature after positioning and orientation of the 

embryos. Agarose is dehydrated in 70% EtOH/saline while kept on ice. Samples are imbedded 

in paraffin after graded dehydration in methanol. Transverse sections of 4µM were made 

using wet mounting with a RN2255 microtome (Leica Technology). Staining was done with 

Harris hematoxylin and special eosin II (BBC Biochemical, Mount Vernon, WA, USA), the 

stained sections were imaged with a Motic AE31 TrinocularAE30 Inverted Microscopeswith 

Leica MC170 HD camera. 
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RESULTS 

Linkage analysis 

Linkage analysis was performed on the entire family, and maximal LOD-score (MLS) of 0,727 

was obtained in 27 regions (Figure S2). These regions contained a total of 1273 genes, 

obtained from Ensemble (www.ensembl.org).  

 

Whole exome sequencing and gene identification  

Whole exome sequencing was performed on both affected siblings and the unaffected sibling. 

After filtering the variants in the genes in the linkage regions, under a hypothesis of autosomal 

recessive inheritance, we identified 1 gene with a homozygous variant (PHCDA9) and 2 genes 

(ZNF587 and KIF20A) with compound heterozygous variants (Table 1S). The PCHDA9 gene 

contained a nonsynonymous variant (c.1006C>G: p.L336V) which was absent in the 1000 

genomes, but with an allele frequency of 51% in local exomes and common in the ExAC 

database. In ZNF587 two missense variants were detected, c.956C>G (p.T319S) and 

c.1676G>A (p.R559Q) with an allele frequency of respectively 1% and 6% in local exomes.  

 

In KIF20A we identified a missense variant (c.544C>T: p.R182W), changing an arginine to a 

tryptophan, and a frameshift mutation, creating a premature stop codon (c.1905delT: 

p.S635Tfs*15). The c.544C>T substitution in exon 6 results in a single amino acid substitution 

(p.R182W) within the motor domain of the protein. Arginine and tryptophan are members of 

different chemical amino acid groups, and the R182 amino acid is highly conserved across 

mammalian species. The variant c.544C>T: p.R182W was predicted to be damaging by in silico 

tools SIFT, Polyphen and MutationTaster. The c.1905delT in exon 15 results in a frameshift 

that introduces a premature stop codon 15 amino acids downstream. These observations 

suggest that both variants are likely to affect protein function.  

These variants were absent in the population control exomes. In the ExAC Browser database, 

containing genetic data of 60 706 humans of various ethnicities, the missense variant was 

found in 2 individuals, respectively of South Asian and European origin. The frameshift variant 

was present in 32 individuals of African descent. All of the KIF20A variants in this database are 

heterozygous [17]. Sanger sequencing validated the presence of both variants in the affected 



119 
 

siblings and confirmed a heterozygous carrier status in both parents (maternal c.544C>T and 

paternal c.1905delT). Both variants were absent in the unaffected sibling. Mutations in other 

known cardiomyopathy genes were absent in the two affected siblings. 

 

Quantitative real-time PCR (qPCR) was used to investigate the effects of the KIF20A variants 

on its expression by comparing KIF20A cDNA-levels amplified from mRNA isolated from 

patient and control fibroblasts. Both patients had a significantly reduced expression level to 

40-60 % of control levels (Figure 2A).  To investigate the effect of the variants on KIF20A 

protein levels, immunoblotting was performed using unrelated controls and patient 

fibroblasts. Both affected individuals had a reduced amount of endogenous KIF20A protein 

compared to controls (Figure 2B). Antibodies for the N-terminal and C-terminal part of the 

protein gave identical results, indicating that the frameshift mutation leads to elimination of 

the transcript by nonsense-mediated mRNA decay.  

The localization of the remaining KIF20A in dividing patient fibroblasts (c.544C>T: p.R182W) 

was then examined. These cells have approximately half the levels of KIF20A when compared 

to control fibroblasts, but retain normal levels of other cell division proteins (Figure 2C). In 

control cells, KIF20A localizes to the spindle midzone in anaphase and telophase of dividing 

cells where it promotes recruitment of the Aurora B kinase (Figure 3A). In both patients KIF20A 

was aberrantly targeted to chromatin and failed to support translocation of Aurora B to the 

spindle midzone (Figure 3A).  

As a consequence of the inability to relocate Aurora B to the spindle midzone, Aurora B 

phosphorylation of a key anaphase central spindle protein KIF23 was reduced (Figure 3B, 

arrows).  
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Figure 2. KIF20A mutations affect Aurora B transport during cell division in patient 

fibroblasts.  

Figure 2A shows quantification of KIF20A transcript level in unrelated controls and patients by 

qPCR. KIF20A expression was normalized to the expression of the house-keeping gene GAPDH. 

** indicates p < 0,01. Figure 2B shows KIF20A levels in unrelated control and patient 

fibroblasts undergoing cell division. Figure 2C shows western blot analysis of KIF20A and other 

anaphase spindle protein levels in unrelated control and patient fibroblasts. 
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Figure 3. KIF20A mutations affect Aurora B transport during cell division in patient 

fibroblasts.  

Localization of KIF20A in control (C2) and two patient (P1 and P2) fibroblasts undergoing cell 

division. Cells were stained with antibodies for KIF20A, Aurora B and the Aurora B pS911 

phosphorylation site on KIF23 (marked with arrows). 

 

This failure to move from chromatin to the anaphase spindle microtubules suggested that the 

missense mutation (c.544C>T: p.R182W) perturbed the kinesin motor activity. This possibility 

was therefore tested using microtubule-stimulated ATPase assays. Purified wild type or 

R182W mutant KIF20A proteins were tested over a range of concentrations in microtubule-

stimulated ATPase assays. Plots of the initial rate of ATPase hydrolysis as a function of the 

concentration of motor domain show that the KIF20A R182W missense mutation has greatly 

reduced microtubule activated motor activity (Figure 4A). This reduction in ATPase activity is 

typical of kinesin “rigor” mutants, which can bind to microtubules but cannot dissociate or 

move along them. To further pursue this idea, a wild type KIF20A E245A “rigor” mutant and 

the missense mutation present in the patient cells R182W were transfected into HeLa cells 

where the endogenous copy of KIF20A was removed by siRNA. In the absence of any KIF20A, 

Aurora B is trapped on chromatin and is not present on the central spindle Figure 4B. 

Expression of wild type KIF20A rescues the transport of Aurora B to the central spindle. 

However, neither the patient R182W mutation nor the rigor E245A supported efficient Aurora 

B transport and this remains trapped on chromatin in dividing cells. Together these results 
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indicate that the missense variant (c.544C>T: p.R182W) is a near-complete loss-of-function 

mutation creating an ATPase defective form of KIF20A. 

 

Figure 4. Functional studies of the KIF20A R182W mutant. 

(A) Microtubule stimulated ATPase assays for control wild type (WT) and patient (R182W) 

KIF20A proteins revealed a near complete loss-of-function. (B) Localization of wild type KIF20A 

(WT) and an engineered “rigor” mutant (E245A) and the patient-associated R182W mutant in 

HeLa cells revealed that Aurora B remains trapped on chromatin and is not present on the 

central spindle. 

 

Zebrafish model 

Knockdown analysis 

The R182 amino acid was conserved in zebrafish and human. Amino acid sequence alignment 

of human KIF20A and the zebrafish kif20a protein showed a 46% identity and 64% similarity 

(Figure S3), suggesting that zebrafish kif20a may have similar function as the human ortholog. 

The gene was expressed in all early zebrafish stages from 1-2 cell to 6 dpf (Figure 5A). Using a 

kif20a-atgMO, a 74% reduction in protein production was obtained at 48hpf (Figure 5B). 

Zebrafish hearts started beating at the expected 24 hpf. At 48hpf, cerebral oedema was 

observed, as well as a smaller trunk shorter total body length. From 2dpf onward a progressive 

cardiac phenotype was seen in the morphants with pooling of red blood cells proximal to the 
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atrium, relative tachycardia and cardiac oedema (Figure 5C). At 144 hpf (day 6) the abnormal 

phenotype was present in 90% of the 80 embryos in 4 independent experiments (Figure 6). 

Co-injection of P53 MO to rule a possible toxicity effect did not influence the phenotype. A 

dose dependent effect of kif20a-MO was evident (Figure 5D). Partial rescue was obtained by 

cDNA bearing human KIF20A WT, confirming kif20a was the gene responsible for the cardiac 

phenotype (Figure 5E). No rescue was seen with the R182W mutant. Together these results 

indicate that kif20a was essential for zebrafish heart development, an evolutionally conserved 

function. 

 

Histology of the heart and cardiac function 

The whole heart of kif20a morphants was smaller and significant pericardial edema was 

evident in all transverse sections of the morphants when compared with controls (Figure 6A). 

The atrioventricular (AV) valve in morphants appeared morphologically normal, the bulbus 

arteriosus (BA) was smaller and the atrial and ventricular walls were thicker compared to 

controls. A clear looping defect was present in the kif20a morphants (Figure 6A), where the 

atrium was located laterally at the same lever of the ventricle as opposed to dorsally in 

controls. Pooling of blood was present anterior to the atrium of the morphants, suggesting a 

decreased function.  

To better characterize the heart phenotype in kif20a morphants, we evaluated several cardiac 

parameters including heart rate and fractional shortening (FS). At 3dpf the heart rates were 

similar in the controls and kif20a morphants. At 4dpf the morphants showed a significant 

increase in heart rate (p = 0.009, Figure 6B), most likely as a response to progressive heart 

failure and decreased stroke volume, since cardiac output equals heart rate x stroke volume. 

Although an increased ventricular fractional shortening was seen in the kif20a morphants 

compared to the controls (40.6 % ± 10.38 vs. 30.49% ± 4.91, p = 1,62774E-05); more outliers 

were observed in the kif20a morphants which suggested systolic failure following diastolic 

failure (Table 1 and Figure 6B). The end-systolic diameter (ESD) of the atrium in kif20a 

morphants was significantly smaller (p = 0.001); this is most likely due to increased force 

necessary to empty the atrium into a more rigid ventricle. These findings suggest that kif20a 

is required for normal heart function in zebrafish embryos. 
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Figure 5. Zebrafish kif20a knockdown studies.  

(A) RT-PCR analysis of zebrafish kif20a gene expression during early stages. Gapdh was used 

as a housekeeping gene. 

(B) Western blot analysis of whole lysates from control and kif20a morphants showing a 74 % 

protein reduction. Actin was used as a loading control. 

(C) Morphological analysis of zebrafish control and kif20a morphants at 3-4 dpf. 

Upper panel: Bright-field and fluorescence images of zebrafish control and kif20a morphants 

at 3 dpf. The white star indicates cerebral oedema.  

Lower panel: Bright-field and fluorescence images of zebrafish control and kif20a morphants 

at 4 dpf. The red arrows indicate cardiac oedema.  

(D) Rescue experiments where embryos were injected with kif20a-MO only, together with 

human KIF20A WT cDNA or KIF20A R182W cDNA. The percentage of cardiac phenotype in 

each groups at 3 dpf is presented.  

(E) Dose dependent effect of kif20a-MO with varying concentrations of kif20a-MO (range 0-

2 mM), injection dose was 4,6 nl. The percentage of cardiac phenotype at 3 dpf is shown.  
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Figure 6. Histology and cardiac function evaluation of zebrafish kif20a morphants. 

(A) H&E staining of zebrafish embryos injected with control MO and kif20a MO at 4 dpf, magnification 

of 10x and 40x. Arrows indicate cardiac oedema. Upper panel: Bright-field images of control and 

kif20a morphants at 4 dpf showing the section locations (1 and 2).  

Lower panel: H&E staining images of control and kif20a morphants at position 1 and 2.  

 (B)  Cardiac function analysis. 

Left panel: Heart rate in beats per minute is compared in control and kif20a morphants at 

3 dpf and 4 dpf. A significant increase in heart rate is observed in the morphants at 4 dpf, most 

likely due to progressive cardiac failure. 

Right panel: Fractional shortening is compared in control and kif20a morphants respectively 

in the atrium and ventricle. Although a significant increased fractional shortening is present in 

the morphants, more outliers are seen, suggesting systolic failure. 

 

DISCUSSION 

We report a family with two siblings presenting with a novel lethal congenital heart disease. 

It was characterized by fetal-onset restrictive cardiomyopathy predominantly affecting the 

right ventricle and leading to irreversible heart failure and early death. Given the occurrence 

of the same distinct phenotype in siblings of both sexes with unaffected parents, autosomal 

recessive inheritance was likely. This phenotype is unique and to our knowledge has not been 

reported in literature previously. After exclusion of mutations in known CM genes, linkage 

analysis and exome sequencing was performed to identify the genetic basis. We were able to 

identify functional variants in the KIF20A gene as the most likely cause. Two compound 

heterozygous variants were found; one variant was a missense mutation (c.544C>T: 

p.R182W), the other a frameshift mutation, creating a premature stop codon (c.1905delT: 

p.S635Tfs*15). There is no known phenotype of constitutional KIF20A mutations in humans. 

In mice, homozygosity is lethal in all pups at an early age of 3-4 weeks, but no phenotypic 

details have been reported [18]. In a zebrafish model we showed that translational blocking 

of the zebrafish kif20a gene resulted in a cardiomyopathy phenotype and that kif20a is 

required for proper heart patterning and function, suggesting KIF20A has an evolutionary 
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conserved function in heart development. Future studies using more specific genetic knockout 

models could provide additional valuable information about its function. 

Kinesin family member 20A (KIF20A), a.k.a. Mitotic kinesin-like protein 2 (MKLP2) or Rab6-

interacting protein (RAB6KIFL) is one of the kinesin-like proteins. These proteins are 

microtubule-associated motors that play important roles in intracellular transport and cell 

division [19]. It is required for chromosomal passenger complex-mediated cytokinesis and 

translocation of the chromosomal passenger complex (CPC) from the chromatin to the central 

spindle in metaphase, anaphase and telophase[20]. Functional studies in patient fibroblasts 

revealed reduced protein levels associated with deficient transport of the Aurora B and the 

CPC which remains trapped on chromatin in dividing cells. This was due to the missense 

variant causing a near complete loss-of-function of the ATPase function of KIF20A. It is not 

excluded that a complete loss-of-function is embryonically lethal, and that the minimal 

residual function of one allele in this family allowed survival beyond fetal life. 

KIF20A is highly expressed in cardiac myocytes, fetal liver and thymus; and to a lesser extent 

in fetal heart, kidney, spleen and lung. The crucial role of PLK1 in cardiomyocyte proliferation 

has been shown in zebrafish. This cardiomyopathy phenotype predominantly affected the 

right ventricle. Currently, it is not known why this occurs. It might be related to a different 

origin of the right ventricle which is formed by the second heart field, compared to the left 

ventricle which originates from the primary heart field. However, this might also be secondary 

to distinct differences in function of the fetal left and right heart. Unlike the adult circulation, 

in the fetus, the stroke volume of the fetal LV is not equal to the stroke volume of the RV as a 

result of intracardiac and extracardiac shunting. The RV receives around 65% of the venous 

return and the LV about 35% [21]. A cardiomyopathy affecting predominantly the RV could 

thus lead to significant morbidity and possible mortality during the fetal or early neonatal 

period. This could lead to early unexplained mortality and underreporting of this specific 

phenotype. Additional phenotypic features becoming apparent at a later age would also be 

difficult to detect. 

The specific link with the cell cycle and this cardiopathy in humans is still unclear. Previously 

we and others reported mutations in the ALMS1 gene as a cause of mitogenic 

cardiomyopathy. This links cardiomyopathy to ciliopathy and the cell cycle [22, 23]. These 

reports open a new mechanism for future research in cardiomyopathies and cytokinesis. 
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SUPPLEMENTAL MATERIAL 

 

Figure S1. Pedigree of the family. 

II-2 and II-3 were diagnosed with restrictive cardiomyopathy, patients demised at the age of 

6 and 3 months respectively.  The parents and older sibling have a normal phenotype. 
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Figure S2. Represents the LOD score in function of the chromosomal position in 

centimorgan (cM). 
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Figure S3. Amino acid sequence alignment of human and zebrafish KIF20A genes.  

HsKIF20A, human KIF20A gene and Drkif20a, zebrafish kif20a gene are shown in alignment. 

Black highlighting shows identical residues with the red star indicating the conserved R182 

residue in human and zebrafish.  
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CHAPTER 5  

GENERAL DISCUSSION AND FUTURE PERSPECTIVES 
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1. GENE IDENTIFICATION IN CONGENITAL HEART DISEASE 

The general objective of this study was to contribute to understanding the genetics of 

congenital heart defects (CHD) and congenital cardiomyopathies. One way to make progress 

is to identify novel genes and mechanisms involved in congenital heart disease, through the 

study of well-selected patients and families. We applied state-of-the art genetic technologies 

to screen the genome for intragenic mutations in sporadic and familial forms of unique types 

of syndromic CHD or cardiomyopathies. 

In two families with suspected autosomal recessive inheritance of a highly distinct type of 

lethal cardiomyopathy, we identified the underlying genetic cause. In one family, with 

mitogenic cardiomyopathy, a homozygous mutation in the ALMS1 gene was identified [1], a 

gene previously associated to Alström disease, a multisystem disorder also featuring 

cardiomyopathy.  Shortly after submitting our observation, another group reported the same 

finding in other, unrelated families with mitogenic cardiomyopathy [2]. In a second family, 

with a thus far undescribed phenotype of restrictive cardiomyopathy of the right ventricle, 

compound heterozygous mutations in the KIF20A gene were identified. Extensive functional 

data provide strong support to a causative role of these mutations in the phenotype. However, 

definitive proof would require confirmation in a second family with the same phenotype. No 

such family has been identified so far, despite many calls for patients at different cardiology 

meetings and searches in the literature and genetic databases. 

The finding of a novel genetic explanation for specific phenotypes has an important impact on 

the families involved. In the first family with ALMS1 mutations, we were confident enough of 

a causal relationship between the mutations and the phenotype to offer prenatal diagnosis in 

a subsequent pregnancy. However, opinions differed amongst geneticists whether in the 

second family with the KIF20A mutations, the data are sufficiently certain to allow the use in 

prenatal diagnosis, if requested. 

However, these results are also interesting from a more fundamental point of view. These two 

genes have a role in cell cycle regulation, and for the first time link mutations involved in this 

process to congenital cardiomyopathies. This is not unexpected. Fetal cardiomyocytes are 

mitotically active, but soon after birth, cardiomyocytes rapidly lose their capacity to divide and 

they undergo terminal differentiation. The ALMS1 protein plays a central role in this process 
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of mitotic arrest. In humans, lack of functional ALMS1 results in a dilated cardiomyopathy 

characterized by increased mitotic activity. Increased cardiomyocyte proliferation is also 

observed in cultured mouse cardiomyocytes where the Alms1 mRNA has been knocked-down. 

Likewise, postnatally, increased cardiomyocyte proliferation is seen in homozygous Alms1 

knockout mice [2]. How this leads to dilated cardiomyopathy is currently not known.  

ALMS1 is spatially associated with key components of the mitotic machinery: during mitosis, 

it localizes at the centrosomal spindle poles and during late mitosis also at the cleavage furrow 

and the contractile ring [3]. KIF20A, as one of the kinesin-like proteins also has a key role in 

regulating mitosis [4], through intracellular transport and cell division [5]. It is required for the 

translocation of a key player, the chromosomal passenger complex, from the chromatin to the 

central spindle in metaphase, anaphase and telophase [6]. 

These insights will contribute to a better understanding of the cellular processes mediating 

the fetal to postnatal transition of the cardiomyocyte.  

Besides these cardiomyopathies, we also studied syndromic forms of structural heart defects, 

CHD. In the cardiology clinic, many patients with syndromic CHD remain without diagnosis. 

Over the last years the introduction of NGS has resulted in a spectacular increase in the 

number of new genes causing a wide variety of developmental disorders [7-10]. Recent 

studies indicate that persons with a syndromic type of CHD carry an excess of de novo 

mutations in other genes besides those already associated to CHD or ID [11]. This indicates 

that many genes still remain to be discovered in this field. In our (small) cohort of patients, we 

identified the MEIS2 gene as a novel gene associated with a syndromic form of CHD, 

associated with cleft palate and ID. Since then, a number of other reports have confirmed this 

finding [12-14]. Likewise, we observed for the first time that CHD may belong to the 

phenotypic spectrum of DYRK1A mutations. Since then, this has also been confirmed by other 

research groups [11]. 
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2. NGS: POSSIBILITIES AND LIMITATIONS 

A second aim of this study was to provide updated guidance for genetic testing in the 

congenital cardiology clinic, in view of the recent introduction of diagnostic NGS.  

Exome sequencing in families with a clear monogenic disorder often fails to identify the causal 

mutation, as we experienced in 5 of the sporadic patients investigated in a trio approach, but 

also in three of our five familial cases. This indicates that WES has its limitations, which can 

be both technical and biological. It is therefore crucial that clinicians are aware of the 

limitations of NGS as a diagnostic tool, including missed mutations, difficulties in variant 

classification and the importance of good clinical phenotyping. 

 

1. TECHNICAL ASPECTS 

1.1. Failure to detect intragenic mutations 

A first step in exome analysis is capture of the exons of all coding genes [15, 16]. 

The efficiency at which exons are captured and sequenced is not equally distributed, resulting 

in regions that are poorly covered, meaning that the number of reads at this locus is too low 

to allow a reliable calling of variants sequences. For instance, the first exon of many genes is 

GC-rich, and is often poorly covered. A good quality experiment is 80% of the target region 

being covered at 20X or higher [17], meaning that on average, 20% of all exons in the target 

region are not high-quality calls analysed.  

Different bioinformatics tools exist that identify variants in the sequences. However, the 

concordance between these different tools is low [17]. This implies that with any variant 

calling tool used, true variants will be missed, even though a variant is present in a sufficient 

number of reads. In particular, calling of indels (small insertions or deletions, with a size below 

1kb) is challenging.  

WGS is expected to give a more even coverage, since there is no capture nor any PCR 

amplification step which may introduce a  bias [18]. Thus, it has been proposed that WGS 

yields 5% extra exonic mutations compared to exome [19]. 
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In a trio approach (depending on the stringency of the filter) unequal coverage may result in 

some calls and thus candidate genes not being taken into consideration, e.g. when a 

maternally inherited variant is not sufficiently covered in the mother.  

 

1.2. Exome sequencing will miss certain classes of mutations 

1.2.1. Structural variations including deletion or duplication CNV’s (size >1 kb) cannot be  

detected reliably by exome sequencing [15]. However, bioinformatics tools are being 

developed and it is expected that WGS will overcome this limitation.  Balanced structural 

anomalies such as inversions or translocations cannot be detected by WES, but again, WGS 

offers the opportunity to detect these [20]. 

 

1.2.2. Epigenetic mutations 

Currently, this category of mutations fall within the group of imprinting disorders. For the vast 

majority of autosomal genes, expression occurs simultaneously from both alleles. In 

mammals, however, a small proportion (<1%) of genes are imprinted, meaning that gene 

expression occurs from only one allele, either maternal or paternal. This is mediated by 

epigenetic alterations of these genes. Amongst other mechanisms (deletion, point 

mutations), epigenetic changes, associated with altered methylation profiles, can result in a 

developmental disorders such as Beckwith-Wiedemann syndrome, Prader-Willi syndrome, or 

Angelman syndrome. The diagnosis of this class of disorders requires dedicated technologies 

targeted at analysing the methylation profile of the sequences involved.  

1.2.3. Uniparental disomy 

Uniparental disomy occurs when both homologous chromosomes are inherited from a single 

parent, and the other parent’s chromosome for that pair is missing. For most chromosomes, 

this is without consequence, but for a few chromosomes, it can result in a disorder when the 

chromosome harbours an imprinted gene. Also, when the region harbours a mutation in a 

gene for an autosomal recessive disorder, uniparental isodisomy (meaning that both 

chromosomes are identical) will result in a recessive disorder. In a trio analysis, UPD will 

readily be detected since in the region absence of alleles from one parent will be detected.    
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1.2.4. Mosaicism 

Mosaicism results when a mutation occurs post-zygotically, and is present only in a proportion 

of cells. The first challenge is to detect a low grade somatic mosaicism, meaning that the 

variant is only present in a small proportion of cells and thus of the obtained sequences. This 

requires a much deeper sequencing, many more reads need to be obtained (with increasing 

cost) [21]. Second, the mutation may only occur in certain tissues, and thus escape detection 

in white blood cells. This has been observed for certain cortical dysplasias [22] and for Proteus 

syndrome [23]. 

1.2.5. Non-coding regions 

In some cases with a well-defined genetic condition no mutations can be detected in the 

coding parts of the gene causing this disorder. It is assumed that mutations in non-coding 

regulatory sequences can result in the disorder as well. To date, only very few examples exist, 

probably because it is still challenging to identify such mutations. Examples of mutations in 

non-coding sequencing resulting in a distinct phenotype include the SOX9 gene and Robin 

sequence [24], Cooks syndrome [25], and possibly also CHD [26],  the FOXL2 gene and BPES 

[27], the SHH gene in polydactyly [28], and the IRF6 gene and Van der Woude syndrome [29].  

The identification of such variants will require WGS analysis, but functional validation of found 

variants will be very challenging, and require extensive validation studies. 

1.2.6. Tandem repeats 

Expansion of tandem repeats are a cause of some monogenic conditions, such as the Fragile-

X syndrome, myotonic dystrophy and Huntington’s disease.  Most of the current sequencing 

technologies are not well suited to detect long repeats [30]. 
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2. PITFALLS IN INTERPRETATION AND VARIANT FILTERING 

Variant classification is one of the main challenges in contemporary genetics, as discussed 

already in chapter 3. Given the vast amount of very rare genetic variants, it remains often 

impossible to unambiguously interpret genetic variants. Classification according to certainty 

has been proposed, ranging from class 1 (certainly not functional) to class 5 (certainly 

pathogenic) [31]. However, this classification is still associated with much subjectivity. 

Moreover, it creates novel questions. For instance, which categories should be communicated 

to the patients, and under which circumstances? Should they be followed clinically or excluded 

from follow-up? Do we need to report unclassified variants (class 3), for which there is not 

sufficient evidence to classify them as either likely pathogenic or non-functional? 

Also, the knowledge in this field is growing rapidly, with novel genes being identified 

continuously for different phenotypes. This may leave the clinician with the feeling of always 

running behind, in the sense that the genetic test offered may not have incorporated the latest 

findings. Can we expect the genetic laboratory to regularly re-analyse the data in view of novel 

insights? And if we do, is this practically feasible and economically valid? 

Careful correlation of the genetic findings with the patient’s phenotype is crucial in correct 

interpretation. First, patients may carry more than one pathogenic mutation, which may 

explain why the phenotype wasn’t recognized clinically. In different series, patients with two 

separate de novo mutations were detected in 17/317 patients (5.3%) [8], 8/226 (3.5%) [32] 

and 101/2076 (4.9%) [33]. In one of the patients we studied, a SALL1 mutation was detected. 

However, it remains uncertain whether this is the sole explanation of her condition, as her 

phenotype is atypical and the ID is too severe compared to what is observed in other patients 

with Townes-Brocks syndrome.  

Also, under the hypothesis of a dominant cause of the disorder, variants found in a 

(supposedly) healthy parent will be discarded in a trio approach. For most severe syndromes, 

this is acceptable, since it is expected that these conditions occur de novo. However, many 

dominant syndromes exist with variable expressivity or even reduced penetrance. In these 

circumstances, a parent may be carrier of a pathogenic mutation with only mild or no 

manifestations. Examples include Noonan syndrome and Holt-Oram syndrome. It is therefore 

crucial that parents are also assessed clinically and counselled before genetic testing is 

initiated.  
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Another possible pitfall when filtering against inherited mutations are inherited mutations in 

imprinted genes, where the expression depends on the parental origin on which the mutation 

is located [34]. 

 

3. GUIDELINES FOR GENETIC TESTING IN PATIENTS WITH CHD 

From a clinical view, the indication for genetic testing can best be evaluated by classification 

of the patient according to a sporadic or familial occurrence and a syndromic or non-

syndromic appearance.  

 

3.1. Syndromic and sporadic 

This is the group where genetic testing is most frequently requested.  

It is now generally accepted that chromosomal microarray analysis is a first tier test given a 

high diagnostic yield of 15-20% in clinically unclassified syndromic patients [35-39]. Parental 

analysis can aid in the interpretation of a variant of unknown significance, but equally 

important is the message that parental karyotype analysis with FISH is required when a de 

novo duplication or deletion is found. This serves to exclude the small chance (2%) that one of 

them is carrier of a balanced insertional translocation of the fragment involved [40]. This 

situation is associated with a 50% recurrence risk, compared to a very low risk when this can 

be excluded (1% or less, due to possible germline mosaicism). 

WES is a second tier test, ideally in a trio design. The diagnostic yield of WES in cases with 

unknown syndromic CHD in the study by Homsy et al. [41] was 20%. This compares fittingly to 

other large studies in individuals with a developmental disorder, where the diagnostic yield 

varied from 16-50% [7, 42-44]. 

It is likely that in the future, WGS will replace both tests, since it will allow a comprehensive 

mutation scanning for both CNV’s and SNV’s.  

3.2. Syndromic and familial  

In this exceptional situation, microarray followed by WES is indicated as for sporadic 

syndromic cases. The optimal approach for WES depends on the suspected inheritance 
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pattern, which may be autosomal recessive or X-linked. However, in exceptional cases, the 

underlying cause will in fact be autosomal dominant, with gonadal mosaicism in one of the 

parents.  It has been common practice in clinical genetics to counsel parents of a child with a 

de novo dominant disorder for a low (1%) recurrence risk. This has recently been substantiated 

in genetic family studies, where in a quad approach (two parents and two children) 1% of all 

de novo mutations were shared by the two siblings [45] 

 

3.3. Familial non-syndromic 

Four studies have performed screening of a panel of genes in a cohort of familial CHD [46-49] 

(Table 1). 

Study N° genes N° families Selection N° solved Solved (%) 

Blue 2014 57 16 2 or more 5 31% 

Jia 2015 57 13 3 or more 6 46% 

El Malti 2016 4 154 2 or more 16 10% 

LaHaye 2016 WES 9 2 or more 3 33% 
 

Table 1. Comparison of 4 different studies in familial CHD with columns showing number of 

genes analysed, number of families included, selection of family based on number of 

individuals per family affected, number of families solved in total study and percentage of 

families solved in total study. 

Taken together, these results show that the chance of identifying the causal gene increases in 

large families. In most instances, the candidate gene corresponded to known genotype-

phenotype associations e.g. NOTCH1 in left outflow tract obstruction, TBX5 in atrial septal 

defects type II, NKX2.5 in septal defects, MYH6 in ASD II, and ELN in supravalvular stenosis of 
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peripheral pulmonary stenosis. These results indicate that testing a panel of known CHD genes 

is feasible in large CHD families with 3 or more affected individuals. However, as for many 

autosomal dominant disorders, genetic counselling is complicated by variable expressivity and 

reduced penetrance.  

3.4. Sporadic non-syndromic 

The majority of CHD patients occur sporadically and are non-syndromic. In this group, the 

contribution of genetic testing is limited.  

Several studies have shown an increased burden of rare CNV’s in cohorts of NS-CHD patients 

compared to the control population, on average about two fold increase [50]. Other studies 

reported an increased de novo incidence of CNV in 3.9%-15.4% of cases [51]. It is difficult to 

translate these findings to the clinic for a number of reasons. First, many studies did not 

include appropriate controls, but on average, a de novo CNV is found in 2% of the population. 

Second, different studies are difficult to compare, because of the inclusion of different types 

of CHD or different cut-off values for the size of a CNV (ranging from >100 kb to > 500 kb). 

Third, one of the complicating factors of such large cohort studies is that, in retrospect, many 

of the cases with a CNV were found to be in fact syndromic. Finally, given the occurrence or 

rare or de novo CNV’s in the normal population, the finding of a novel CNV in an individual 

with a NS-CHD does not implicate causality. With the exception of known pathogenic CNV’s, 

for most novel CNV’s it will not be possible to unambiguously assign causality [52].  

Before the advent of NGS, several studies have evaluated the incidence of mutations in single 

candidate genes in large cohorts of sporadic patients. Examples include NKX2-5, GATA4, and 

TBX20.   The overall conclusion is in line with the results from more recent trio exome studies 

in NS patients that de novo mutations are in fact very rare in sporadic NS-CHD. Homsy et al 

[41] reported a low incidence of excess de novo PTV in 2% in NS-CHD cases (compared to 20% 

of cases in S-CHD). Likewise, Sifrim et al. [11] also found a small excess of de novo protein 

truncating in CHD genes and of missense mutations in CHD genes and non-DD genes.  

As for CNV’s, also an excess of inherited rare SNV’s (minor allele frequency <1%) was observed 

in known CHD genes in NS-CHD, but not in S-CHD. This indicates that a small proportion of 

sporadic NS-CHD has an oligogenic cause, due to variants with a moderate effect and thus 

non-penetrance in one of the parents. In NS-CHD, because of reduced penetrance and variable 
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expressivity, patients can inherit mutations from an unaffected or mildly affected parent. Of 

interest, again an excess of inherited rare variants was observed in the genes not associated 

with CHD or DD, indicating that additional CHD genes remain to be identified. However, 

despite the statistically significant findings, the questions remains whether this is of clinical 

diagnostic interest as it only concerns a small proportion of cases (2% in the study of  Homsy 

et al.) [41]. This proportion further decreases when considering that in the study of Sifrim et 

al. one case had an inherited mutation in a gene associated with a recognisable cardiac 

phenotype (e.g. the ELN gene) and more than half had a mutation in a gene that typically 

causes a syndromic CHD, be it with variable expressivity: SOS1 and Noonan syndrome, FBN2 

and contractural arachnodactyly, SALL4 and Townes-Brocks syndrome, as well as COL1A1 and 

osteogenesis imperfecta. Therefore, from a diagnostic point of view, trio exome analysis in 

sporadic and apparently non-syndromic cases is unlikely to change the currently used empiric 

recurrence risks in the majority of cases, with the exception of a few very distinct types of CHD 

(ELN and SVAS/PPS, NKX2.5 and ASD2 with conduction disturbances).   

Thus, genetic testing in the majority of sporadic cases does not reveal a mutation, which is 

compatible with the generally accepted idea that sporadic NS-CHD has a multifactorial 

etiology.  

 

CLASSIFICATION OF CHD 

The distinction between these different categories is not always strict. First, certain CNV’s can 

present as either of these four categories.  There are CNV’s that are associated with an 

increased risk for various medical, developmental and psychiatric manifestations, with 

variable expressivity and reduced penetrance. These CNV’s are initially detected in an affected 

child, but can be inherited from a clinically unaffected parent.  The classical example in 

cardiology is the duplication in chromosome 1q21.1. This CNV is associated with Tetralogy of 

Fallot, and found in almost 1% of all ToF cases [51, 53].  Moreover, there is a risk for borderline 

intelligence, gross and fine motor disturbance, Autism Spectrum Disorder and increased 

prevalence of macrocephaly. Thus, the presentation can be either isolated or syndromic [54]. 

In addition, more than 80% of 1q21.1 duplications are inherited, from a parent with variable 

manifestations [55]. It can thus occur sporadically or familial. Other CNV’s that are associated 

to CHD include the 22q11.2 duplication syndrome [56, 57] and possibly the del15q11.2. 
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Counselling for such CNV’s is especially challenging with regard to recurrence risk of 

manifestations in a sibling or when detected antenatally. These are variants with a moderate 

effect, and are situated in a spectrum with monogenic and multifactorial at the ends. It is likely 

that in the future, WES and WGS will identify other genes that are susceptibility loci for CHD, 

either isolated or syndromic. These will present the same challenges in interpretation and 

counselling.  

 

Second, mutations in certain genes can be associated to either syndromic or non-syndromic 

CHD.  Obviously, this classification depends on a very careful and expert clinical evaluation. 

For instance, in a large series of so-called non-syndromic CHD, mutations are found in several 

syndromic genes [11, 58]. However, currently it is generally accepted that mutations in TBX5 

and JAG1 can be associated with either an isolated CHD as well as a syndromic [48, 59]. 

 

4. ECONOMIC ASPECTS OF NEXT GENERATION SEQUENCING 

Finally, translation of this novel NGS technology into the clinic still comes at a high financial 

cost. Developmental disorders caused by de novo mutations have an estimated prevalence of 

1/213 to 1/448 live births. Globally this would equate to almost 400,000 children being born 

per year with developmental disorders. For Belgium, with an annual birth rate of 

approximately 120.000, this means 270-560 children per year [60].  

Previous studies have indicated that first tier testing using microarray analysis is cost effective 

for individuals with unexplained ID [61]. For NGS, several studies suggest cost-effectiveness of 

WES performed at an early stage of the diagnostic odyssey in developmental disorders [62-

66], but other studies state that it is too early to say whether NGS technology offers value for 

money [67].  

Diagnostic testing including genetic testing are indicated when clinical utility is obvious: the 

results needs to be actionable, e.g. with regard to reproductive counselling, improved 

treatment options or prediction of outcome). However, clinical utility is difficult to define. In 

the field of clinical genetics, there is a strong tradition of believe in personal utility, i.e. the 

value of information about the cause of the disorder for the patient and, his family [68, 69]. 
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NGS is a great leap in accelerating our knowledge on genetics of CHD. This is already applied 

in research and diagnostic settings to the benefit of patients and their families. However, 

many limitations still exist. The next challenge is resolving the remaining gaps in our 

knowledge, and WGS will be the first next step in current and future studies. 
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CONTINUING MEDICAL EDUCATION 
x Basic Life Support (BLS) practical and theory course: 98% 
x Advanced Trauma Life Support (ATLS®) practical and theory course: 83% 
x European Paediatric Life Support (EPLS®) :  8-10 February 2010: passed with distinction 
x European Echocardiography Course on Congenital Heart Disease: 6 -10 October 2010, 
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x 5th Junior Training Course in Cardiac Catheterization and Interventions: 13-15 March 

2014, Linz, Austria 
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DIE VROLIKE VLAM 
 

Dis die smorende vuur wat swaarkry 
en tog nie die kos kan gaarkry. 

 
Dis die vrolike vlam wat klap en kraak 

dis hy wat sy taak tot vermaaklikheid maak 
en sy swaarkry met lekkerkry klaarkry. 

 

- C.J. Langenhoven, Aan stille waters, 11 Julie 1932 

 

 


