

06/09/2022

Methylmalonic acid as indicator of cobalamin deficiency

ASO Lieselot Dedeene

Supervisor: Dr. Apr. Kathleen Croes, Prof. Apr. Nico Callewaert

• Vrouw, 27 jaar

- Bepaling Waarde SEDS 24 mm/h BBC 4.16 x10*12/L ΗВ 14.0 g/dL HCT 40.2 % MCV 96.6 fL MCH 33.7 pg мснс 34.8 g/dL BDW 15.1 % IWBC 6.86 x10*9/L PLT 259 x10*9/L MPV. 10.6 fL IG % 0.6 %
- Hcy: 41.4 µmol/L (ref: 5-15) MMA: 31.53 µmol/L (ref. 0.39) LYMF 36.9 % MONO 9.3 % NRBC 0.0 /100 WBC EO_Abs 0.11 x10*9/L BASO_Abs 0.02 x10*9/L LYMF_Abs 2.53 x10*9/L SEGM_abs 3.52 x10*9/L MONO_Abs 0.64 x10*9/L IG ABS 0.04 x10*9/L

65.5 µa/dL

353 na/L

12.5 µg/L

B12 ref < 200 ng/L

B12

Foliumzuu

• Spoedopname

- Tintelingen kuiten en voeten, progressief verminderde sensibiliteit voeten, verminderd evenwicht, gangstoornissen, paresthesie thv armen, handen,...
- Subacute polyneuropathie oorzaak?

Technische onderzoeken

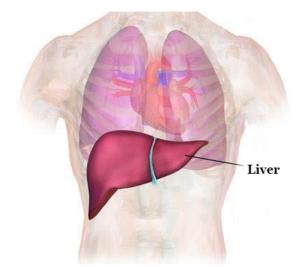
- CT hersenen: geen bijzonderheden
- NMR hersenen: geen argumenten voor demyeliniserende pathologie
- NMR full spine: beeld suggestief voor gecombineerd strenglijden obv vitamine B12 deficiëntie, koperdeficiëntie of infectieuze serologie (cf. neurosyfillis, HIV)
- Differentiaal diagnoses: Guillain-Barré syndroom, myelitis, atypische presentatie multiple sclerosis
- Verloop
 - Eénmalig 1000 mg B12 intramusculair: goed effect op klachten

→ Normale B12 in serum kan gepaard gaan met klinische B12 deficiëntie met uitgesproken symptomen!

Vitamin B12 = cobalamin

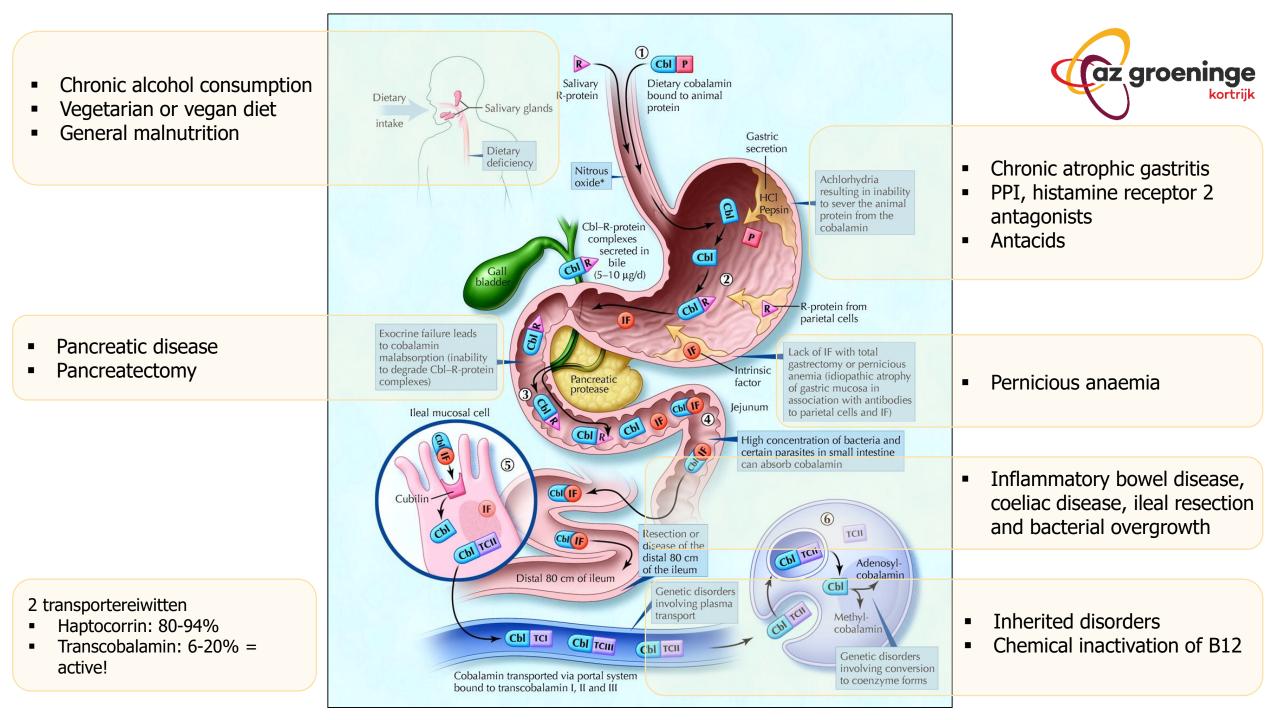
Daily B12 requirement

2-3 µg

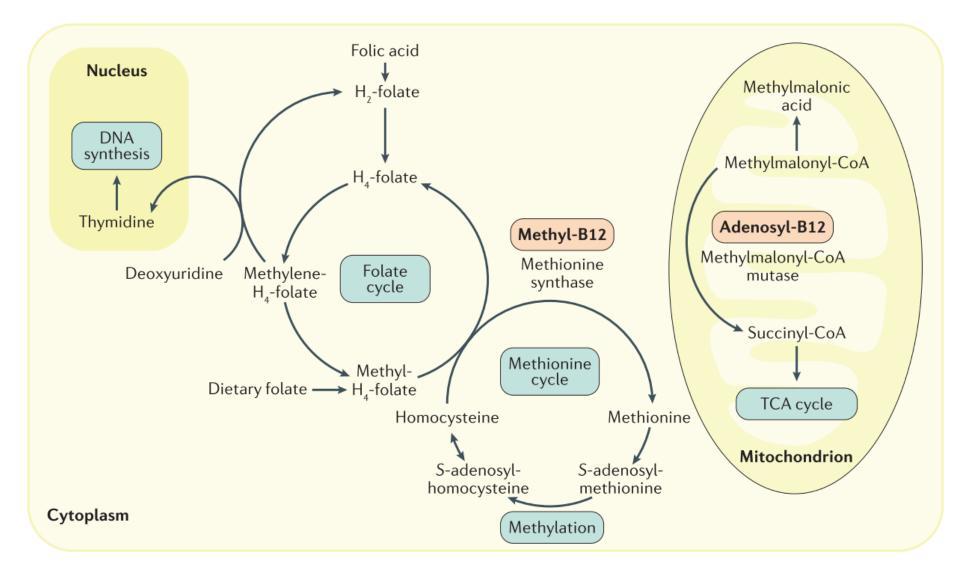

<<<

Body storage

2-5 mg \rightarrow 1 mg in liver ~ daily metabolic requirement of 2000 days



Short periods of insufficiency are covered



Persistent long-term cause: cobalamin deficiency

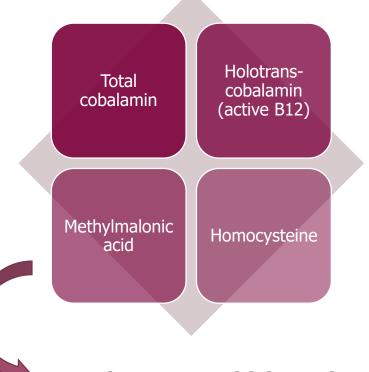
B12 metabolism and function

Clinical B12 deficiency

Haematological symptoms: defective DNA synthesis

- Macrocytosis
- Hypersegmentation

Neurological symptoms: demyelination of peripheral and central neurons


- Sensory and motor disturbances
- Spasticity and paralysis
- Cognitive decline
- Potentially irreversible!

\rightarrow Timely diagnosis and treatment is paramount to prevent irreversible damage!

Subclinical B12 deficiency (SCCD)

- Sometimes non-characteristic symptoms
- Clinical impact of SCCD and the progression rate towards a clinical deficiency remains to be elucidated!



Inadequate sensitivity and specificity of stand-alone markers → combination of min. two markers?

Research questions

1. Which biomarkers can be used in the diagnosis of cobalamin deficiency?

2. Is it possible to improve the diagnostic process of cobalamin deficiency by implementing the analysis of methylmalonic acid in the clinical laboratory of AZ Groeninge?

Total cobalamin (total vitamin B12)

Measurement

- immobilized nonhuman IF on beads or magnetic particles
- B12 is released from the transporter proteins HC and TC

(+) Advantages

- Highly accessible
- Easy-to-use
- Reimbursed in Belgium

(-) Disadvantages

- Total cobalamin = active (~20%) + INACTIVE fraction (~80%)
- WHO: < 203 ng/L = deficient
- Inadequate sensitivity and specificity around the presumed cut-off level (200 ng/L)

Holotranscobalamin (active B12)

Measurement

- Sandwich immunoassay
- Fraction cobalamin bound to transcobalamin (= the active fraction)

(+) Advantages

• Represents the "active" fraction

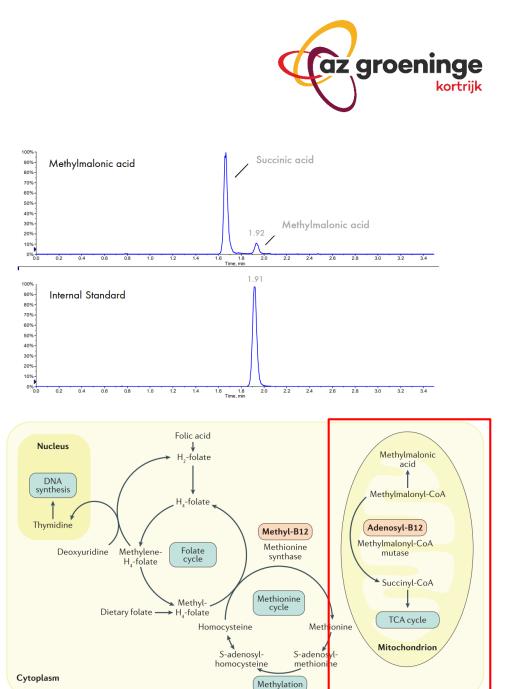
(-) Disadvantages

- Influenced by the **daily influx** from the gut/**recent absorption of B12**
- Contradicting findings in literature:
 - Sensitivity & specificity
 - Correlation total cobalamin and holoTC
 - Varying cut-off levels
- Not reimbursed in Belgium

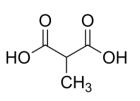
Methylmalonic acid

different mechanism

Measurement


- GC-MS, LC-MS/MS
- Structural isomer succinic acid

(+) Advantages

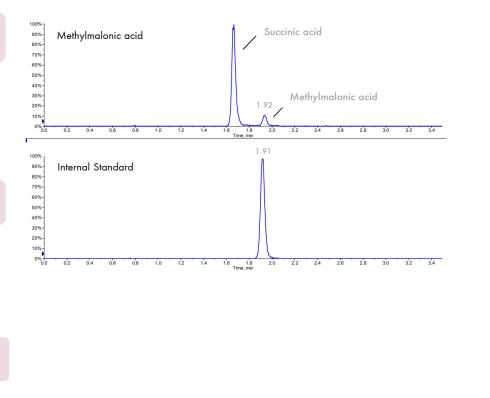

- Sensitive, functional marker
- **Specific** marker (<-> homocysteine)

(-) Disadvantages

- Increasing **age** \rightarrow higher MMA levels
- Impaired **renal function** \rightarrow higher MMA levels
- Other influencing factors
- Not reimbursed in Belgium

different mechanism

Measurement


- GC-MS, LC-MS/MS
- Structural isomer succinic acid

(+) Advantages

- Sensitive, functional marker
- **Specific** marker (<-> homocysteine)

(-) Disadvantages

- Increasing **age** → higher MMA levels –
- Impaired **renal function** \rightarrow higher MMA levels
- Other influencing factors
- Not reimbursed in Belgium

400 nmol/L

?

Adequate

800 nmol/L

Deficient

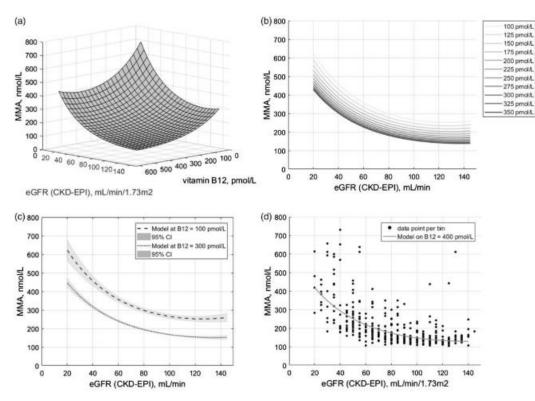

Methylmalonic acid: reference ranges

TABLE 1 Selected published reference intervals for serum or plasma MMA¹

Authors (reference)	Population	Central 0.95 reference interval, nmol/L	Additional information
Allen et al. (11)	Healthy US middle-aged adults	73–271	Men and women, $n = 50$; 18–65 y
Rasmussen et al. (12)	Healthy Danish middle-aged adults	50-370	Men and women, $n = 50$, 10–05 y Men and women, $n = 58$; 40–68 y (median: 53 y)
Rasmussen et al. (4)	Healthy Danish middle-aged adults before	80-280	Men $(n = 109)$ and women $(n = 126)$; 20–84 y (men;
(4)	and after vitamin B-12 supplementation	80-280	median: 50 y) and 20–85 y (women; median: 49 y);
	for 1 wk (in a few cases for 2 wk)		all but 1 subject had plasma creatinine concentrations
	for 1 wk (in a few cases for 2 wk)		within the reference interval for healthy subjects
oosten et al. (5)	Healthy Belgian, Dutch, and German	62-247	Men and women, $n = 99$; 19–55 y (mean: 30 y)
obstell et al. (b)	middle-aged adults	02-247	We have wonten, $n = 99$, $19-55$ y (mean: 50 y)
	Healthy Dutch elderly living at home	72-476	Men and women, $n = 64$; 65–88 y (mean: 76 y); no
	Treating Dutch enderry hving at nome	72-470	participant had creatinine clearance $<30 \text{ mL/min}$
	Healthy German elderly after B-vitamin	55-278	Men and women, $n = 143$; 65–96 y (mean: 75 y); no
	supplementation for 3 wk	55-210	participant had creatinine clearance $<30 \text{ mL/min}$
ewerin et al. (13)	Swedish elderly with and without		Men and women, $n = 209$; 70–88 y (women) and 70–93
(10)	B-vitamin supplementation		y (men) (overall median: 76 y)
	Total study group at baseline	110-480	n = 208
	Healthy elderly at baseline	120-380	n = 123
	Healthy elderly after B-vitamin	20-340	n = 78 (vitamin B-12–replete)
	supplementation for 4 mo		
Ailman et al. (14)	Healthy Danish pregnant women		Women ($n = 434$) with a normal pregnancy ≥ 37 wk
	18 weeks of gestation	40-290	n = 413
	32 weeks of gestation	50-340	n = 390
	39 weeks of gestation	60-360	n = 250
	8 wk postpartum	80-350	n = 160
Vogiatzoglou et al. (10)	Norwegian middle-aged adults		Men and women, $n = 3684$; 47–49 y
	Unselected	100-320	n = 3684
	Vitamin B-12 ≥200 pmol/L	100-300	n = 3568
	Vitamin B-12 ≥400 pmol/L	100-280	n = 1306 (vitamin B-12–replete)
	Norwegian elderly		Men and women, n = 3262; 71–74 y
	Unselected	110-490	n = 3262
	Vitamin B-12 \geq 200 pmol/L	110-410	n = 3043
	Vitamin B-12 \geq 400 pmol/L	100-360	n = 1058 (vitamin B-12–replete)
Erdogan et al. (6)	Healthy US adults	60-360	Men $(n = 16)$ and women $(n = 24)$
	US persons tested for MMA (unknown		Males and females ($n = 4944$); highest 10% of results
	clinical history)		disregarded (potentially unhealthy persons)
	0–10 y	0-510	n = 28
	11–20 y	30-260	n = 39
	21–30 y	50-330	n = 165
	31–40 y	50-400	n = 287
	41–50 y	50-400	n = 545
	51-60 y	50-420	n = 813
	61–70 y	50-440	n = 918
	≥71 y	50-480	n = 2149

Methylmalonic acid: correction for eGFR

Figure 2. Model. (a) 3D representation of the model plotted against vitamin B12 and eGFR, showing a curved plane (mean adjusted	I.
R^2 0.46 \pm 0.024 (2SD)). (b) 2D representation of the model, plotted against eGFR at different concentrations of vitamin B12. (c) 95%	
confidence interval (CI) at different concentrations of vitamin B12 plotted against eGFR. (d) Isolated effect of renal function on MMA	ί.
plotted together with binned data of only vitamin B12 non-deficient patients, i.e. vitamin B12 >300 pmol/L (n=392). This repre-	
sentation showed the model is in agreement with the data (MAE $=$ 58 nmol/L).	
MMA: methylmalonic acid; eGFR: glomerular filtration rate.	

 \rightarrow 20% (Nielsen et al, 2022) to 40% reduction (58/144) (Van Loon et al, 2018) in B12 deficiency (MMA > 430 nmol/L)

$$MMA_{adj} = MMA_{obs}$$

$$-\left(\widehat{MMA}(B12, eGFR) - \widehat{MMA}(B12, 121)\right)$$

$$\widehat{MMA}(B12, eGFR)$$

$$= \exp(\beta_0 + \beta_1 \cdot B12 + \beta_2 \cdot eGFR + \beta_3 \cdot B12^2 + \beta_4 \cdot B12 \cdot eGFR + \beta_5 \cdot eGFR^2)$$

Van Loon et al, Annals of Clinical Biochemistry, 2018

Succinyl-CoA

TCA cycle

Mitochondrion

Methionine

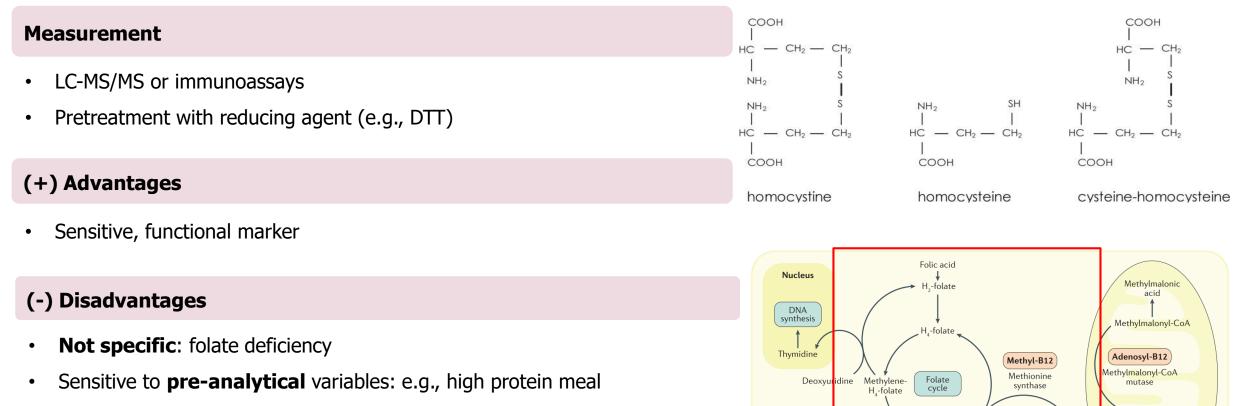
cycle

Methylation

Methionine

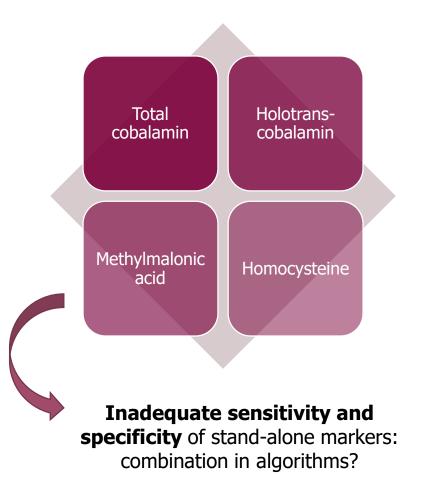
S-adenosyl

methionine


Methyl

Homocysteine

S-adenosylhomocysteine


Dietary folate \longrightarrow H₄-folate

Cytoplasm

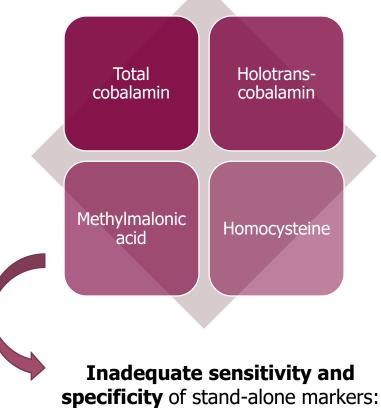
- RBC: increase of 1 µmol/(L*h)
- EDTA sample on ice until centrifugation
- Impaired **renal function and** increasing **age** \rightarrow higher tHcy levels

Diagnostic algorithms

cB12, the combined indicator of vitamin B12 status

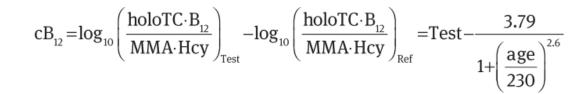
Fedosov, Metabolism Clinical and Experimental, 2010

- Different from the classic "if→then" structure
- Only in patients with normal renal function


$$cB_{12} = log_{10} \left(\frac{holoTC \cdot B_{12}}{MMA \cdot Hcy} \right)_{Test} - log_{10} \left(\frac{holoTC \cdot B_{12}}{MMA \cdot Hcy} \right)_{Ref} = Test - \frac{3.79}{1 + \left(\frac{age}{230} \right)^{2.6}}$$

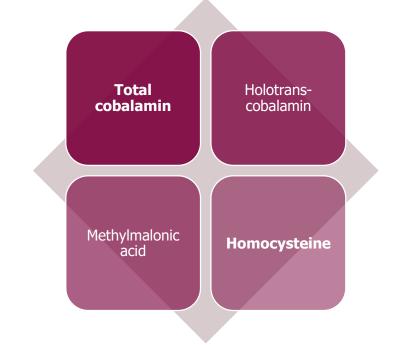
Update: Fedosov et al., Clin Chem Lab Med, 2015

- Formula if **1-2 biomarkers** are missing
- Hcy correction for folate if < 4.4 μ g/L
- Can be used as reference ("gold standard") for B12 deficiency to evaluate individual markers


Diagnostic algorithms

combination or algorithms?

cB12, the combined indicator of vitamin B12 status



Classification	Biological interpretation	Guidelines
Elevated B12	The pathogenesis of high B12 is not fully	Consider potential causes of high B12 levels such
cB12 > 1.5	understood	as liver disease or current or recent
		supplementation or treatment
B12 adequacy	Expected to accomplish all B12 status	No action advised unless signs/symptoms present
cB12: -0.5 - 1.5	dependent functions	
Low B12	Potential subclinical manifestations of	Consider recommending oral supplements
сВ12: –1.5 - –0.5	B12 deficiency i.e., absence of	
	hematological changes, but subclinical	
	neurological impairment	
Possible	Potential manifestations of B12 deficiency	Potentially prescribe oral supplements, assess
B12 deficiency		again in 3–6 months
cB12: -2.51.5		
Probable	It is possible to observe clinical	Consider immediate treatment with IM injections,
B12 deficiency	manifestations of B12 deficiency . Clinical	determine cause with primary consideration for
cB12: < -2.5	outcomes are needed to confirm potential	the possibility of pernicious anemia
	clinical deficiency	

Research questions

1. Which biomarkers can be used in the diagnosis of cobalamin deficiency?

2. Is it possible to improve the diagnostic process of cobalamin deficiency by implementing the analysis of methylmalonic acid in the clinical laboratory of AZ Groeninge?

Implementation of MMA

Instruction Manual for LC-MS/MS Analysis MassChrom® Methylmalonic Acid in plasma/serum/urine

Order No. 64000

Method verification MassChrom reagent kit (Chromsystems)

- Linearity, repeatability, reproducibility, accuracy, total error, selectivity, carry-over, freeze-thaw stability, stability at RT and at 4°C
- **EMA guideline** on bioanalytical method validation

Max. 2 freeze/thaw cycles

min. 7 days

	Repeatability	Reproducibility	Bias	Total error
LLOQ (43.5 nmol/L)	/	14.3%	4.4%	/
QC L1 (174 nmol/L)	1.1%	6.5%	2.9%	13.6%
QC L2 (576 nmol/L)	1.8%	7.1%	-5.7	17.4%
Criteria EMA	15%	15%	15%	(30%)
Biological variation: desirable*	/	3.6%	5.6%	11.5%
Biological variation: minimal*	/	5.4%	8.4%	17.3%

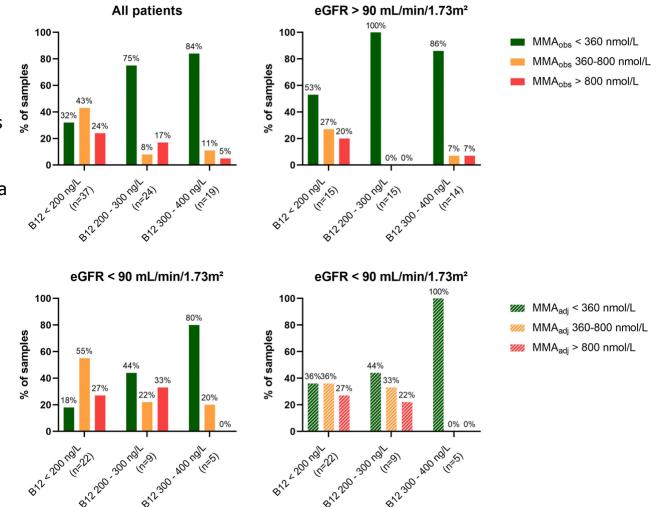
*Lindberg et al, Scandinavian Journal of Clinical and Laboratory Investigation, 2019

Implementation of MMA

Instruction Manual for LC-MS/MS Analysis MassChrom® Methylmalonic Acid in plasma/serum/urine

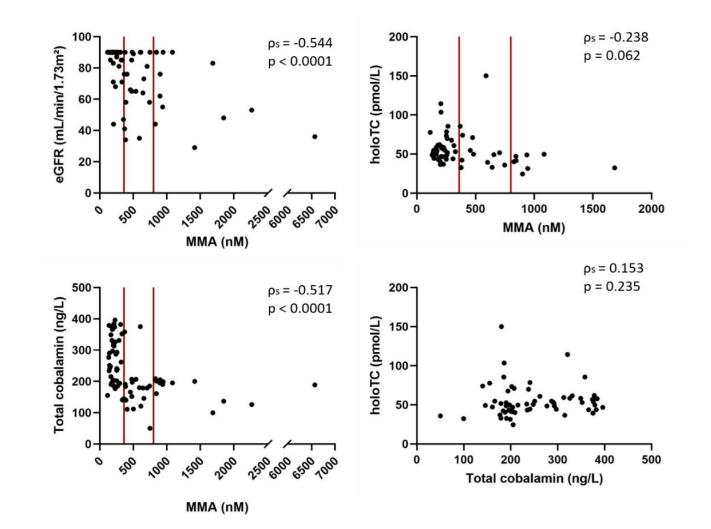
Order No. 64000

Verification of reference values


- CLSI EP28-A3C
- 20 healthy volunteers > 18 years
- Erdogan et al, 2010: 60-360 nmol/L
- Only 1 person > 360 nmol/L (363 nmol/L)
- Reference ranges can be transferred
- + grey zone: 360-800 nmol/L (comment on patient's lab report)

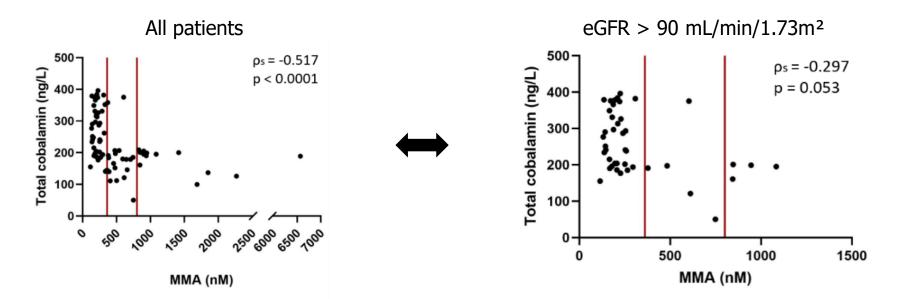
	Healthy volunteers	Reference values	
Ratio male:female	10:10	n.a.	
Age (years)	33.5 (22-64)	n.a.	
MMA (nmol/L)	208 (141-363)	n.a.	
Total serum cobalamin (ng/L)	429 (209-590)	> 200	
Holotranscobalamin (pmol/L)	66.4 (33.8- > 150)	Kit insert: 37.5 – 188 pmol/L	
Homocysteine (µmol/L)	10.4 (6.22-14.7)	< 15	
Folate (µg/L)	5.3 (2.2-9.2)	> 3.88	
Creatinine (mg/dL)	0.80 (0.66-1.18)	Age-dependent: cf. lab tests guide AZ	
eGFR (ml/min/1.73m ²)	> 90 (76 - > 90)	n.a.	
Hoomoglohin (g/dl)	m: 15.8 (14.4-17.3)	m: 13.7-17.1	
Haemoglobin (g/dL)	f: 13.3 (12.3-14.2)	f: 11.8-15.5	
Number of red blood cells (*10^12/L)	m: 5.1 (4.7-6.0)	m: 4.3-5.71	
	f: 4.5 (4.1-4.9)	f: 3.75-5.11	
MCV (fL)	90.2 (80.5-96.7)	84.0-98.3	

Total cobalamin & MMA


- 80 leftover samples from adult patients
- If **B12 < 200 ng/L**
 - only 20% (if eGFR > 90) to 27% (if eGFR < 90) of the patients had an MMA concentration indicative of B12 deficiency
 - **18%** (if eGFR < 90) to **53%** (if eGFR > 90) of the patients had a normal MMA
 - 27% (if eGFR > 90) to 55% (if eGFR < 90) of the patients had an MMA concentration within the grey zone (360-800 nmol/L)
- Correction MMA for eGFR (if < 90) (Van Loon et al, 2018)
 - After correction, 36% of the patients with a B12 < 200 ng/L had a normal MMA level instead of 18% of the patients without correction
 - 21% (5/24) of the samples with MMAobs > 360 nmol/L are reclassified as MMAadj < 360 nmol/L

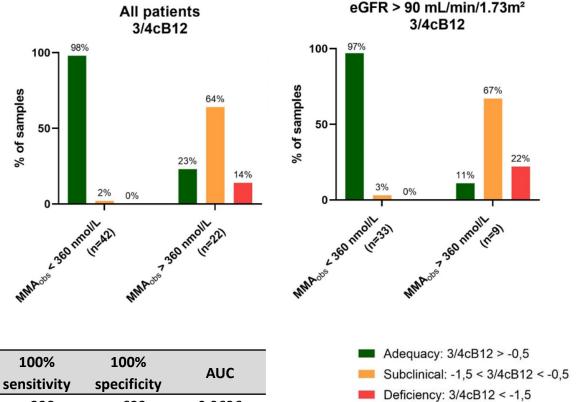
Correlation analysis

- Spearman's rho correlation analysis
- Significant correlation (all patients) between
 - MMA and eGFR
 - MMA and total cobalamin but...

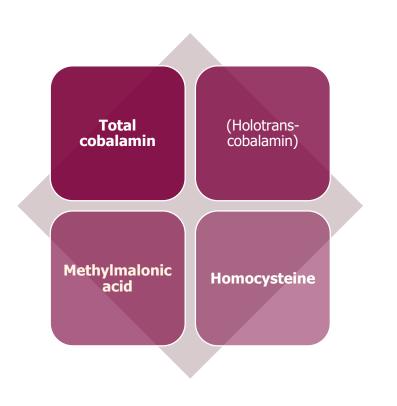


Correlation analysis

- Spearman's rho correlation analysis
- Significant correlation (all patients) between
 - MMA and eGFR
 - MMA and total cobalamin but... **not significant if only patients with normal renal function**

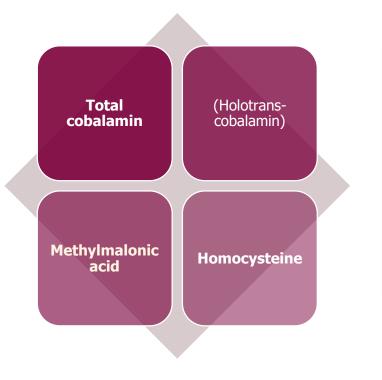

 \rightarrow correlation driven by mildly increased MMA levels in patients with impaired renal function

The cB12 score as a reference for B12 deficiency


- 3/4cB12: B12+MMA+holoTC and/or Hcy
- *n* = 64 samples
- When 3/4cB12 is used to define B12 deficiency, the MMA cut-off of 360 nmol/L
 - adequately **distinguishes** B12 (sub)clinical deficiency from B12 adequacy
 - closely resembles the **optimal cut-off** level revealed by ROC analysis

	Number of patients with B12 deficiency	Number of patients with B12 adequacy	Optimal cut-off (nmol/L)	100% sensitivity	100% specificity	AUC
All patients	18	46	373 (94% sens; 91% spec)	> 228	> 622	0.9626
eGFR > 90	9	33	343 (89% sens; 97% spec)	> 228	> 676	0.9630

Implications and conclusions



- ✓ MMA MassChrom reagent kit was successfully implemented
- ✓ Reference values were verified (60 360 nmol/L)
- ✓ Significant correlation MMA and eGFR
 → Grey zone 360 800 nmol/L
 → eGFR-adjusted MMA may be useful
- MMA may elucidate the actual B12 status and prevent misdiagnosis of B12 deficiency if B12 < 200 ng/L (20-27% of the patients)
- MMA can help to reliably confirm the diagnosis of B12 deficiency in patients with clinical symptoms and B12 > 200 ng/L (5-17% of the patients)
- Thus: the implementation of an analytical method for MMA in serum will considerably improve the diagnostics of cobalamin deficiency in the clinical laboratory of AZ Groeninge

To do's and actions

- Informing the clinicians on the implementation of an analytical method for MMA.
- Follow-up study of correlations between MMA levels and total cobalamin concentrations to further explore the actual prevalence of B12 deficiency in our lab-specific patient population.
- Extending the evaluation of the implemented MMA reference ranges and grey zone, the cB12 score and eGFR-corrected MMA levels by including additional patients with normal and impaired renal function

Thank you for your attention!