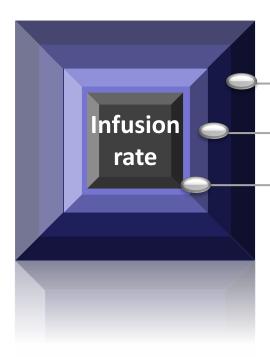


Co's les 2023-2024

Prof. dr. L. Al tmimi Department of Anesthesia University hospitals Leuven

- Many drugs are used to manage hemodynamic before, during and after any operation
- Drug errors → accidental injury to patients especially critically ill
- Use familiar drugs or read the drug information before using the one you don't know

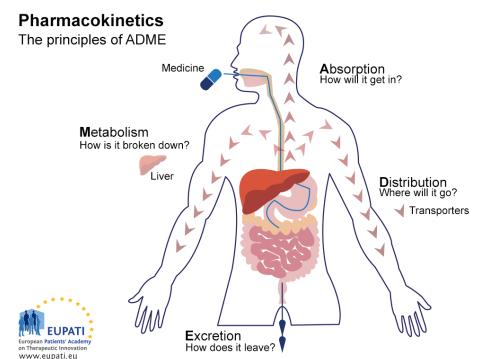
Drug dose calculations


- Not all drugs labeled in a uniformed manner
- Drugs labeled $\mathbb{Z}\%$ contains \mathbb{Z} gram/dL $\in \mathbb{Z}x10$ mg/mL
- Concentration given as a ratio e.g bupivacaine 0.25% + epinephrine 1:200.000 means $5\mu g$ epinephrine for each ml.

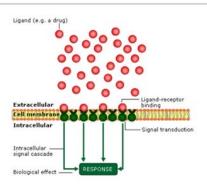
Calculating infusion rate

Dose rate (μg/min) e.g. noradrenaline 0.1μg/kg/min

Concentration e.g. noradrenaline 4mg / 40 ml Nacl 0.9%


<u>Volume rate</u> (ml/hour) = dose rate / concentration

Pharmacokinetics: what the body does for the drug



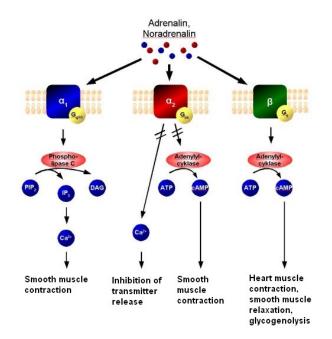
Pharmacodynamics: what the drug does for the body

What is pharmacodynamics?

- · "What a drug does to the body"
- Drugs act by binding to receptors
 - They then cause either activation or inhibition of a regular body process to give a biological response
- ·What do you need to know?
 - A little bit about the different types of receptor
 - Different ways which drugs can affect receptors
 - A little bit about pharmacological terminology

Receptors are usually glycoproteins located in cell membranes that bind smaller molecules (ligands), including drugs. This binding initiates a series of biochemical reactions inside the cell (signal transduction), often involving the generation of 'secondary messengers', and culminating in a biological response.

$$D + R \longleftrightarrow D-R$$



Drug – receptors interaction

Adrenergic receptors: are G protein-coupled receptors; targets for catecholamine

Drug – receptors interaction

Adrenergic receptors

β-receptor effects

Inotropy	inos	force
Chronotropy	kronos	rate
Dromotropy	dromos	conduction
Bathmotropy	bathmos	ectopy tachyarrhythmia

ACTIONS OF ADRENERGIC AGONISTS

CATECHOLAMINES: SELECTIVITY OF SYMPATHOMIMETIC DRUGS

Alpha

Phenylephrine

Norepinephrine

Epinephrine

Dopamine

Dobutamine

Dopexamine**

Isoproterenol

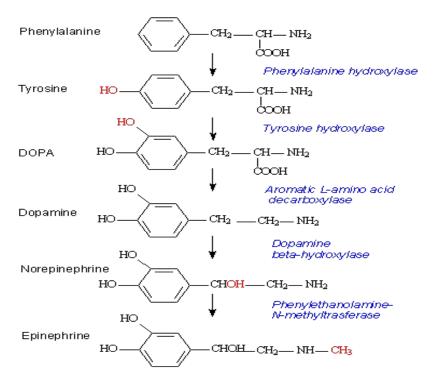
Beta

◆◆Not currently approved by the FDA for use in the United States

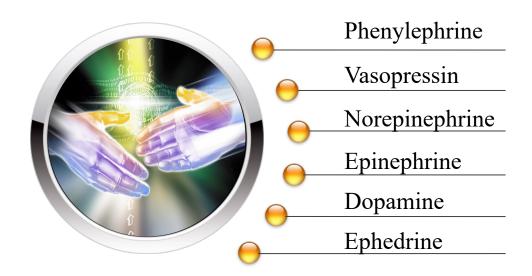
Bailey JM, et al. Adult Cardiac Surgery. 1997:225-254. Levy JH. J Cardiothorac Vasc Anesth. 1993;7(suppl):46-51.

ACTIONS OF ADRENERGIC AGONISTS

SYMPATHO-	RECEPTORS						DOSE DEPENDENCE
MIMETICS	<u>α</u> 1	<u>α</u> 2	■ β ₁	■ β ₂	■ DA ₁	■ DA ₂	$(\alpha, \beta, \text{ or DA})$
Phenylephrine	++++	;	±	0	0		++
Norepinephrine	+++++	+++++	+++	0	0		+++
Epinephrine	+++++	+++	++++	++	0		++++
Ephedrine	++	?	+++	++	0		++
Dopamine	+ to +++++	?	++++	++	+++	?	+++++
Dobutamine	0 to +	?	++++	++	0		++
Isoproterenol	0	0	+++++	+++++	0		0


DA, dopamine.

Synthesis of endogenous catecholamines



Commonly used drugs with vasopressors effect

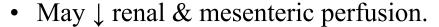
Phenylephrine (Neo-Synephrine)

- Is mainly α drug
- Cause vasoconstriction arteriole & less venous

- Short duration (< 5 min)
- Dose: Iv bolus 1 10 μ g/kg (40 -100 μ g), Or Iv infusion 0.5 10 μ g/kg/min (10-100 μ g/min)

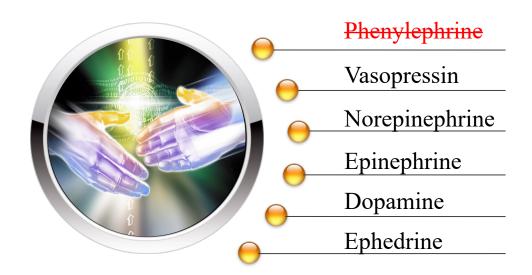
Phenylephrine (Neo-Synephrine) indications

- In hypotension due to ↓ SVR.
- In SVT (reflex vagal stimulation).
- Reverse right-to-left shunt during cyanotic spells in TVF.
- Temporary therapy of hypovolemia till blood volume is restored



Phenylephrine (Neo-Synephrine) disadvantages

- May ↓ CO due to ↑ afterload.
- May ↑ PVR.


- Reflex bradycardia.
- Rarely may induce CAS or spasm of the graft.
- Effect on CO is controversial (may \(\) and \(\) SV)

Commonly used drugs with vasopressors effect

Vasopressin (pitressin)

- Endogenous ADH in high concentration.
- peripheral vasoconstriction.
- Activation of smooth muscle V1 receptors.
- No actions on β adrenergic receptors.
- Vasopressin causes cerebrovascular dilation.

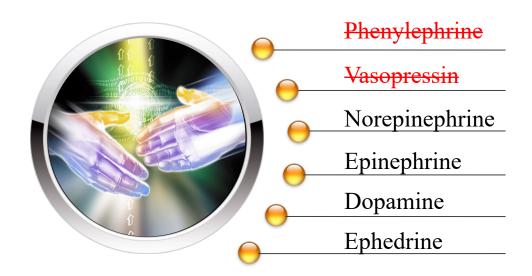
Vasopressin (pitressin) indications

Septic shock or vasoplegic syndrome.

- In sever hemorrhagic shock
- 20-40 U Iv in cardiac arrest when epinephrine not effective
- May maintain SVR in severe acidosis, sepsis, or after CPB

Vasopressin (pitressin) disadvantages

• Arrhythmia, ↓ CO & myocardial ischemia.



- Sever peripheral vasoconstriction & gangrene.
- Bronchoconstriction.

Commonly used drugs with vasopressors effect

Norepinephrine (Noradrenaline or Levophed)

• Is a postganglionic sympathetic neurotransmitter.

- Released from adrenal medulla en CNS neurons.
- Direct α1, α2 & β1 agonist.
- Limited β2 effect in vivo.

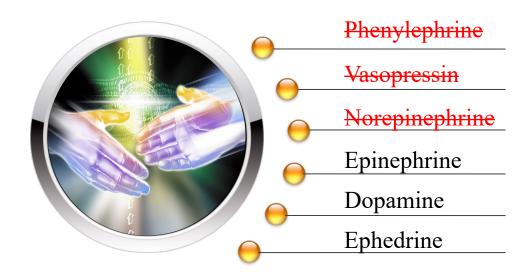
Norepinephrine indications

- Septic shock or vasoplegic after CPB
- In sever hemorrhagic shock.
- AS with low SVR.

- When phenylephrine is ineffective
- Must be given as IV infusion between 0.05-0.3 μg/kg/min

Norepinephrine side effect

• Reduce organ perfusion (kidney, bowel, etc.)



- In high doses produce myocardial ischemia & possibly CAS.
- Arrhythmias.
- Risk of skin necrosis if SC extravasation occur.

Commonly used drugs with vasopressors effect

Epinephrine (adrenaline)

- Produced by adrenal medulla.
- Direct agonist at $\alpha \& \beta$ receptors.
- **↑** contractility & HR.
- SVR is dose dependent.

Epinephrine (adrenaline)

- Lusitropic effect (β 1) enhances rate of ventr. relaxation.
- It is an effective bronchodilator & mast cell stabilizer.
- If BP \uparrow , tachycardia may \checkmark due to reflex vagal stimulation.
- CO may Ψ in very high doses.

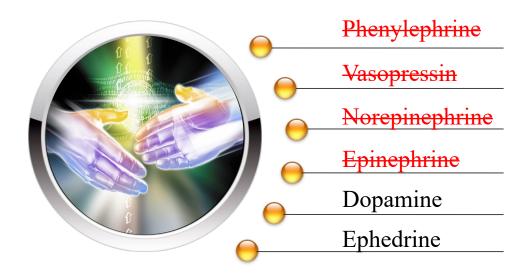
Epinephrine (adrenaline) indications

- In a systole or VF. dose 0.5-1mg IV/IO acces
- In anaphylactic shock
- In bronchospasm (mild to moderate reaction dose :SC 10 μ g/kg or IV 0.03 μ g/kg bolus
- Weaning from CPB if CO low. dose 0.01-0.3µg/kg/min

Epinephrine (adrenaline) indications

- Produce a bloodless field in dentistry & otolaryngology.
- Prolong the action of LA.
- When no respond to ephedrine or phenylephrine after LRA.

Epinephrine (adrenaline) disadvantages


- Arrhythmias.
- Organ ischemia if used in high doses (kidney)
- Myocardial ischemia due to tachycardia & + ve inotropy
- Elevation of plasma glucose & lactate.
- Extravasation cause necrosis

Commonly used drugs with vasopressors effect

Dopamine (Dynatra)

- Stimulate both adrenergic & DA receptors.
- Low dose DA → renal & mesenteric vasodilatation.
- Moderate dose mainly DA & β 1 receptors \rightarrow contractility & renal vasodilatation.

• High doses $\alpha 1$ receptors \rightarrow peripheral vasoconstriction.

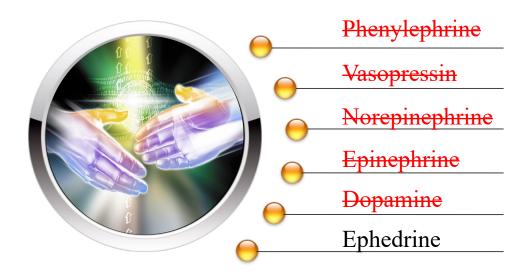
Dopamine (Dynatra) doses

• IV infuse via central line

- Low dose 1-5 μg/kg/min
- Intermediate dose 5- 15 μg/kg/min
- High dose $> 15 \mu g/kg/min$

Dopamine (Dynatra) effect

• Renal effects


- Effects on splanchnic perfusion
- Effects on gastrointestinal motility
- Endocrine and immunological effects
- Intra-operative use (cardiogenic shock, weaning CPB)

Commonly used drugs with vasopressors effect

Ephedrine

- Is a plant- derived alkaloid with sympathomimetic effects.
- Has direct & indirect mechanism of action.

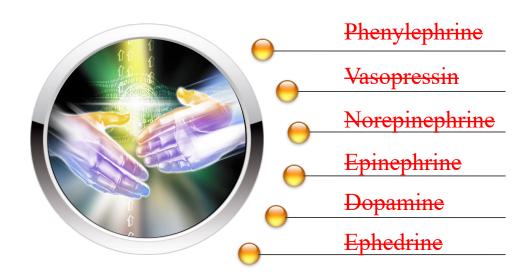
- Mild direct α, β1 &β2 agonist.
- Indirect through noradrenaline release from neurons.

Ephedrine

- Does not reduce blood flow to placenta; safe in pregnancy
- Its effect stays for 5 to 10 min
- No metabolism by MAO, renal elmination

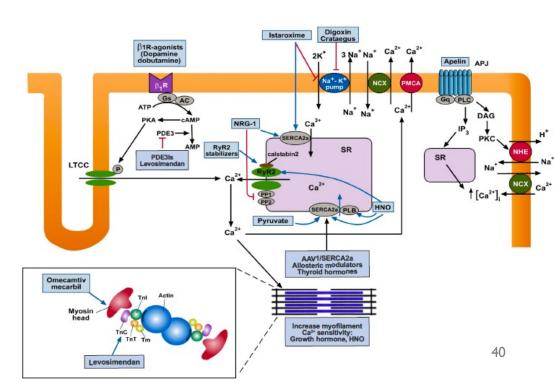
Ephedrine indications

- In hypotension due to low SVR or low CO
- In hypovolemia as a temporal therapy until volume restore
- In transient myocardial depression due to anesthetic overdose
- Improves uterine blood flow in obstetric due to increase BP


Ephedrine disadvantages

- Tachyphylaxis: a rapidly decreasing response of ephedrine after administration of the initial doses
- Caution with MAO inhibitors and norepinephrine-dopamine reuptake inhibitors (NDRIs) due to excessive serum levels of norepinephrine lead to malignant hypertension
- Blunted effect when NE stores are depleted

Commonly used drugs with vasopressors effect

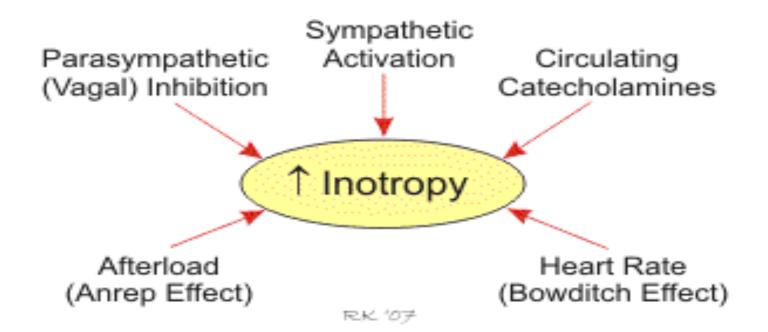


Commonly used drugs with *positive* inotropic effect

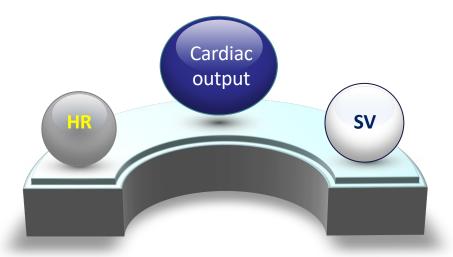
- 1. Isoproterenol
- 2. Epinephrine
- 3. Dobutamine
- 4. PDE III inhibitors
- 5. Dopamine
- 6. Ephedrine
- 7. Calcium
- 8. Digoxine
- 9. T3 hormone
- 10. Glucagon

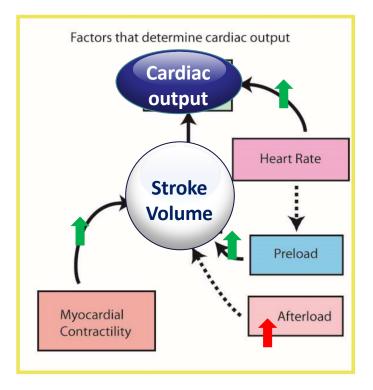
The positive inotropic medications

- Chronic use of oral inotropic agents in ambulatory patients, with the exception of digoxin, remains unproven.
- Inotropic therapy is of potential value in patients with decreased cardiac contractility.
- Heart failure due to diastolic dysfunction or mitral stenosis do not need inotropic support.

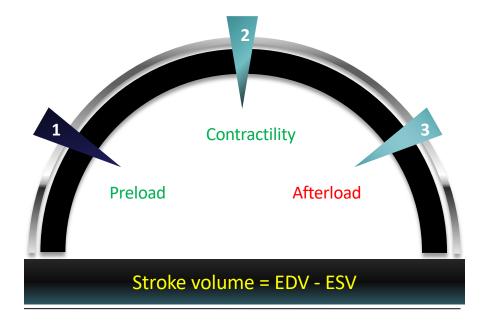

Factors Regulating Inotropy

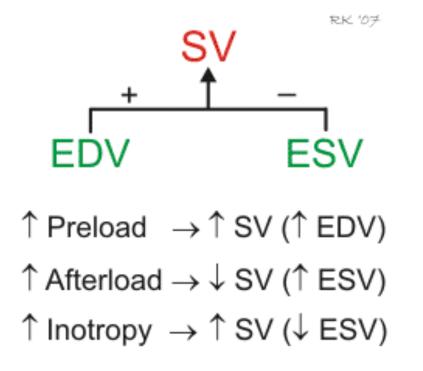
- Sympathetic nerves
- Parasympathetic have a significant –ve inotropic
- Circulating epinephrine augment sympathetic adrenergic effects.
- Sudden \uparrow in afterload cause a small \uparrow inotropy (*Anrep effect*).
- An **\(\Phi\)** in **HR** also stimulates inotropy (**Bowditch effect**)


Factors Regulating Inotropy

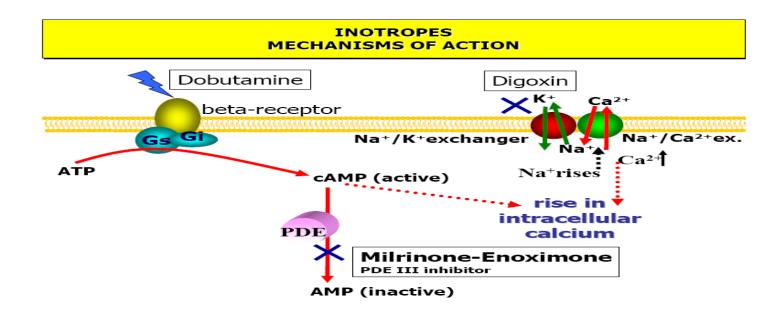


- When the cardiac index is (>2.6 L/min/m2) but the blood pressure is low.
- \rightarrow phenylephrine/ norepinephrine. Vasopressin if both not effective.

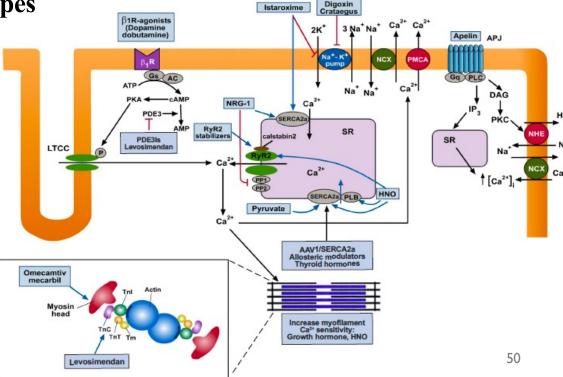


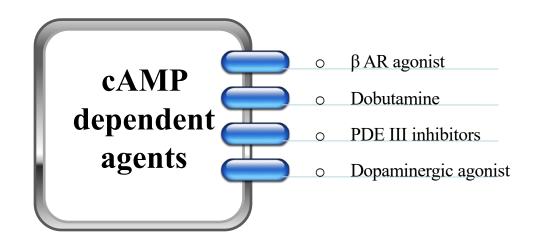


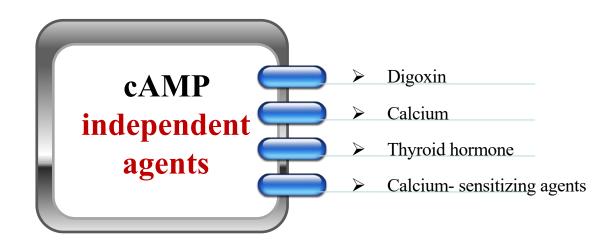
Regulation of Stroke Volume (SV) = EDV - ESV


Mechanisms of Positive Inotropic Effects

- A. INCREASED MYOPLASMIC CA** CONCENTRATION
 - 1. Increase in intracellular cAMP level
 - stimulation of adenylate-cyclase receptor-mediated stimulation direct stimulation
 - phosphodiesterase inhibition
 - 2. cAMP independent activation of Ca⁺⁺ channels
 - alpha-adrenergic agents
 - Ca-agonists
 - 3. Increase in myoplasmic Na⁺ concentration
 - inhibition of Na+/K+ ATP-ase
 - prolongation of the open state of Na+ channels
 - 4. Direct inhibition of Na⁺/Ca⁺⁺ exchange
 - 5. Inhibition of K+ channels
- B. INCREASED Ca⁺⁺ SENSIVITY OF CONTRACTILE PROTEINS


Mechanisms of action of Inotropes


Mechanisms of action of Inotropes


The positive inotropic agents classification

The positive inotropic agents classification

Cardiovascular Active Medications cAMP –dependent agents

Isoproterenol

- Pure Beta agonist.
- Increase contractility but ♥ SVR and diastolic BP
- So O2 Demand ↑ while O2 supply ↓ (poor inotropic choice)
- Can Ψ the PVR in some patients with Pulm HT.

Isoproterenol (Isuprel) uses

- In severe bradycardia when atropine not work
- In cases with third-degree heart block till PM can be placed
- Due to the $\beta 2$ effect, Ψ PVR, used in some cases of mitral disease
- 0.2 mg/ml ampule @ 1-20 μ / min titrated to heart rate

cAMP –dependent agents

Dobutamine

- Relatively selective β agonist
- • CO by increasing myocardial contractility
- Slightly ◆ SVR and Slightly ↑ HR
- Improve Cor BF, a good choice of inotrope in CHF & IHD
- Dose between $2 20 \mu/\text{kg/min}$

cAMP –dependent agents

PDE III inhibitors

- ↓ cyclic AMP degradation
- ↑ cyclic AMP concentration → enhanced Ca⁺² influx into the cell
- Rise in cell $Ca^{+2} \rightarrow \uparrow$ contractility
- Systemic arterial & venous dilation via inhibition of peripheral PD.

PDE III inhibitors

ENOXIMONE (Perfan)

- IV loading dose of 0.5 mg/kg
- IV continuous infusion of 5 μg/kg/min
- ↑ in cardiac index may delayed for 1 hour
- An IV loading bolus of more than 0.5 mg/kg may not provide much more hemodynamic benefit.

PDE III inhibitors MILIRINONE (Corotrope)

- Loading dose: $50 \mu g/kg$ (over $\geq 10 \min$)
- Maintenance infusion of 0.5 μg/kg/min
- Elimination half life: 50-60 min
- Achieves therapeutic plasma concentrations of > 100 ng/ml

PDE III inhibitors

Milrinone in Renal Failure

Creatinine clearance	Infusion Rate
50 mL/min	0,43 μg/kg/min
40 mL/min	0,38 μg/kg/min
30 mL/min	0,33 μg/kg/min
20 mL/min	0,28 μg/kg/min
10 mL/min	0,23 μg/kg/min
5 mL/min	0,20 μg/kg/min

PDE III inhibitors

Side effects

- Excessive ↓ in BP
- Thrombocytopenia
- Dysrhythmias

cAMP –dependent agents

Dopaminergic drugs

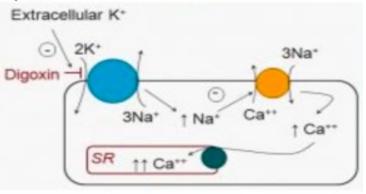
Dopamine (Dynatra) in low and intermediate doses

cAMP -independent agents

Digoxin

- Cardiac Glycoside, Antiarrhythmic Agent Class IV
- ECG 6 h after each dose

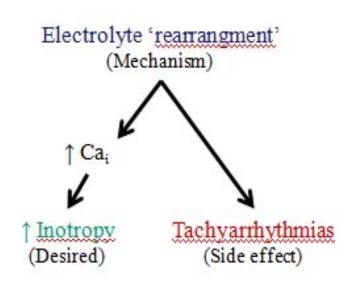
- Rx of congestive heart failure
- Regulates ventricular rate in tachyarrhythmia such as AF, Aflutter and SVT

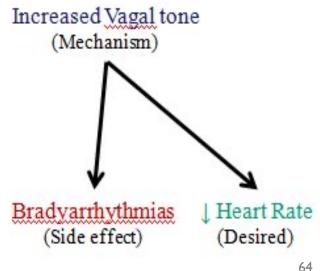


Digoxin

Mechanism of action

- Reversibly inhibits the Na-K-ATPase pump in myocytes
 - Reduces transport of Na from intracellular to extracellular space
 - Increased Intracellular sodium
 - → inhibits Na-Ca exchange
 - → increased intracellular Ca
 - Causes increased contractility and improved LV systolic function
 - Excessive intracellular calcium
 - → premature contractions and trigger arrhythmias
- Also increases vagal tone
 - Slows firing of the SA node
 - Prolongs conduction of the AV node





Digoxin

Digoxin mechanisms of action

Digoxin side effects

- VES bigemine or trigemenie, bradycardia or irregular HR
- Bloody or black, terry stool
- Blurred vision or yellow vision
- Confusion, hallucination, feeling week, headache & dizziness

Digoxin

Total digitalizing dose TDD:

- Adult TDD 8-12 μg/kg IV or IM.
- Infant TDD 20-30 μg/kg IV or IM.
- Give 1/2 of the (TDD) in the initial dose.
- Give 1/4 of the TDD in each of 2 subsequent doses at 6-8h.
- Caution when used with B-blockers or Ca-blockers

cAMP -independent agents

CALCIUM

- $Ca^{+2} < 0.5$ mmoles/L cause depression of ventricular function
- Leading to low cardiac output and hypotension

RATIONALE

- To overcome the effects of cardioplegia
- weaning from cardiopulmonary bypass
- Massive transfusion
- Intraoperative citrate loading in the presence of poor or absent (during the anhepatic phase) liver function

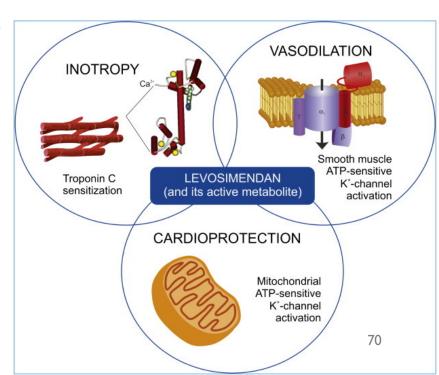
CALCIUM

- Vasoconstrictor response when normal serum Ca⁺² is present.
- May worsen residual myocardial ischemia.
- May produce coronary artery spasm.
- May induce pulmonary hypertension.

CALCIUM

• Adverse effect on diastolic relaxation

- Doses in children 25 mg/kg slow IV
- Adult 500 mg tot 1 g calcium slow IV over 10-20 min



cAMP -independent agents

Calcium- sensitizing agents (Levosimendan)

cAMP -independent agents

Levosimendan

- It has a selective phosphodiesterase (PDE)-III inhibitory action
- loading dose: 6-24mcg/kg over 10 min
- infusion for 24 hours of 0.05-0.2mcg/kg/min

cAMP -independent agents

Levosimendan Mechanism	Physiologic Effect	Potential Benefits for Cardiac Surgery Patients
Calcium Sensitizer	Oxygen Sparing Increase in Cardiac Output (1,2)	Oxygen Efficient Increase in Post-Op Cardiac Reserve/Output
K-ATP Channel Activator- Mitochondria	Protects Cardiac Cells During Ischemia (3,4)	Reduced Peri-Op Myocardial Infarction
K-ATP Channel Activator- Vascular Smooth Muscles Cells	Improved microcirculatory blood flow (5,6)	Improved Post Op Organ Perfusion

Improved Outcomes

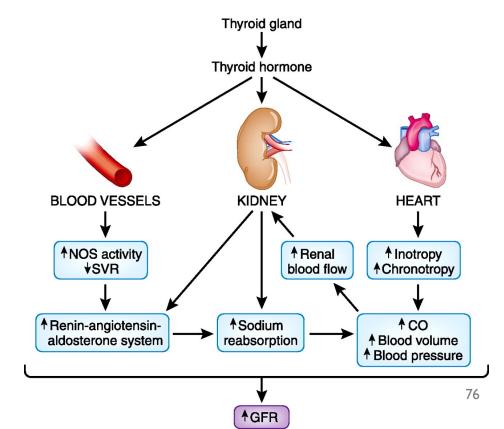
Levosimendan: INDICATIONS

- Acute heart failure
- Sepsis?
- post resuscitation myocardial dysfunction
- perioperative optimization of cardiac patients with cardiomyopathy

Levosimendan: ADVERSE EFFECTS

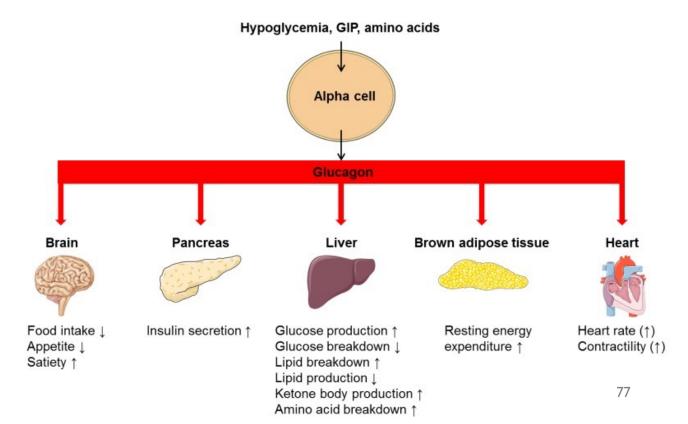
- hypotension
- headache
- Nausea and Vomiting
- Dysrrhythmias

- Levosimendan: PHARMACOKINETICS
- Absorption IV or PO
- Distribution highly protein bound, peak concentrations reached after 2 days of treatment
- Metabolism hepatic, active metabolite with t1/2 of 70 hours
- Elimination dose adjust in renal insufficiency, eliminated in urine and faeces.



Other +v inotropic

• Thyroid Hormone T3



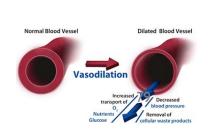
Other +v inotropic

Glucagon

Vasodilators

Classified by site of action

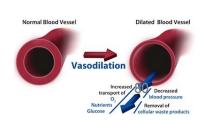
- **♦** SVR (arterial) like Ca⁺² channel blocker
- both arterial and venous resistance like ACE inhibitors, nitroprusside, Angiotensin II receptor blockers etc.
- Venodilator: preload like Nitroglycerine relaxes venous smooth muscle with little effect on arteries



Vasodilators

Indication

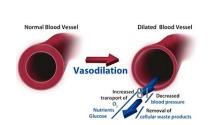
- Hypertension
- Controlled hypotension anesthesia like nitroglycerine
- Myocardial ischemia like ACE inhibitor
- Pulmonary hypertension like Inhaled NO
- In cases of CHF and valvular regurgitation
- In nonrestrictive intra-cardiac shunt as in VSD



Vasodilators

Isosorbide dinitrate (cedocard)

- A venodilator, lesser effect on arterioles.
- Relaxation of the cor. A. → improving myoc. regional BF & myoc. O2 demand.
- Dose 0.1-7 $\mu/kg/min$
- Half-life is 1-3 min



Vasodilators

Isosorbide dinitrate (cedocard)

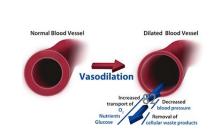
Effect on coronary circulation

- Coronary artery and arteriolar dilation (high dose)
- Spasm reversal or prevention
- Stenosis dilation
- • collateral flow
- Improvement of regional subendocardial ischemia

Vasodilators

Isosorbide dinitrate (cedocard)

Disadvantages

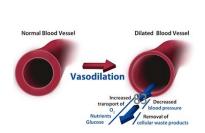

- Ψ BP may $\Rightarrow \Psi$ CPP
- Reflex tachycardia &

 myoc contraction (dose related)
- Methemoglobinemia in high doses
- May increase ICP
- Inhibit HPV (monitor PO2)
- Tolerance in chronic use

CPP = DP - PCWP

CPP = Coronary Perfusion Pressure (mmHg)
DBP = Diastolic Blood Pressure (mmHg)
PCWP = Pulmonary Capillary Wedge Pressure (mmHg)

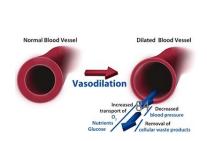
**PCWP is also referred to as PAoP (Pulmonary artery occlusive pressure).



Vasodilators

Inhaled Nitric Oxide iNO

- Selective Pulmonary vasodilator
- **\P** intrapulmonary shunt and improves V/Q matching
- Rapidly inactivated by Hb in pulmonary capillaries, less or no systemic side effects (e.g. hypotension)
- Withdrawal may lead to Pulm. Htn.



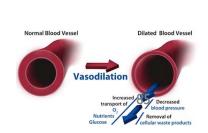
Vasodilators

Inhaled Nitric Oxide

- Potential for use in ARDS and Pulm. Htn.
- Methemoglobinemia (metHb >1%) can occurs
- Special monitoring equipment required & Expensive
- Dose: 0.5-60 ppm in inhaled gas

Vasodilators

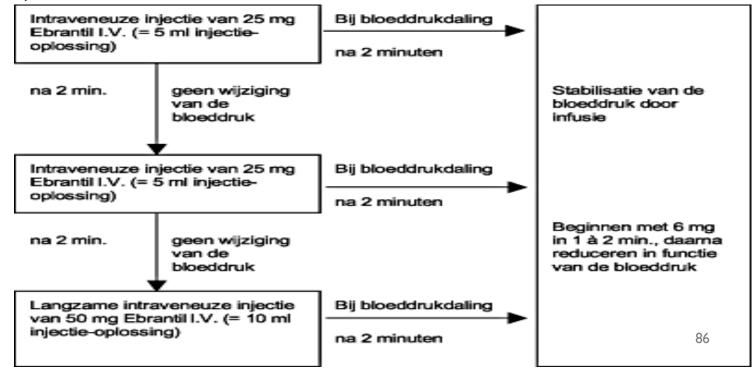
Urapidil (Ebrantil)


- Central sympathetic and peripheral α1 antagonist & serotonin agonist.
- Cause reduction in syst. as well as diast. BP

Indication

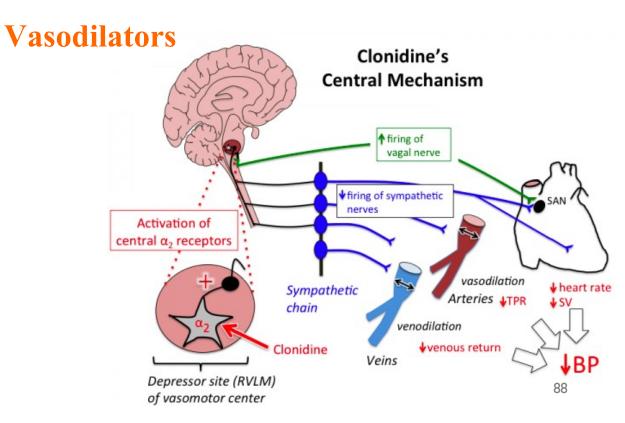
Hypertensive crises

Malignant & therapy resistance Htn


Controlled hypotension anesthesie

Urapidil (Ebrantil)

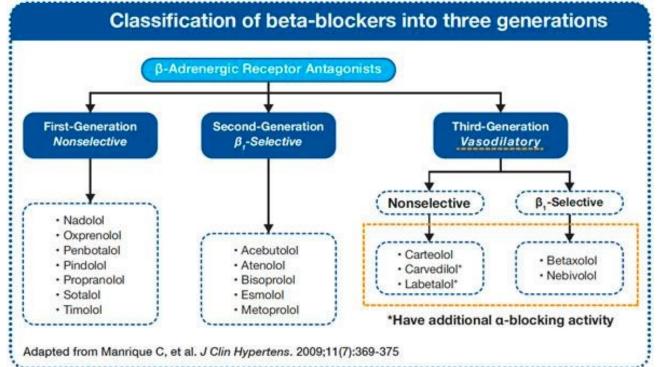
Vasodilators


Clonidine (Catapressan)

- Central α2 agonists & **\Pi** NE release
- Has local anesthetic effects (prolong action of LA)
- Reduce sympathetic coronary artery tone
- Sedative effect

Clonidine (Catapressan)

Antihypertensive medications


Beta blockers

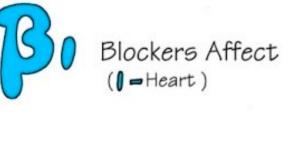
- Also known as β -adrenergic blocking agents.
- They block norepinephrine and epinephrine from binding to beta receptors on nerves.
- They reduce heart rate, reduce Bp & may constrict the airways.

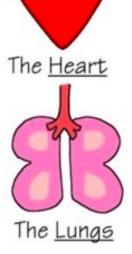
Antihypertensive medications

Antihypertensive medications

Beta blockers

- Non-selective beta blockers: e.g. propranolol (Inderal), block $\beta 1$ and $\beta 2$ receptors \rightarrow heart, blood vessels, & airways.
- Selective beta blockers: e.g. metoprolol (seloken), block $\beta 1$ receptors \rightarrow heart and do not affect air passages.
- Labetalol (Trandate) block β and α -1 receptors.




Antihypertensive medications

Beta blockers

BETA BLOCKER ACTIONS

Antihypertensive medications

Metoprolol (Seloken)

- Selective β1 blockers
- Arterial hypertension & Angina pectoris
- Cardiac arrhythmias like SVT, AF& VES
- OPCAB surgery

Antihypertensive medications

Metoprolol (Seloken)

- Maintenance Rx after MI (when no ventricular failure)
- Symptomatic Rx of hyperthyroidism
- Prophylactic Rx of migraine
- 5 mg iv titration & can be repeated after 2 min
- Half doses in patient with liver failure.

Antihypertensive medications

Labetalol (Trandate)

- Selective $\alpha 1$ and nonselective β -adrenergic blocker
- Mild, moderate or severe arterial hypertension
- Pregnancy hypertension
- Angina pectoris with hypertension

Antihypertensive medications

Labetalol (Trandate)

- Pheochromocytoma
- Not recommended in children
- Bolus IV 20-50 mg, can be repeated after 5 min
- Infusion 2 mg/min
- Effect may stay for 6 -18 hour

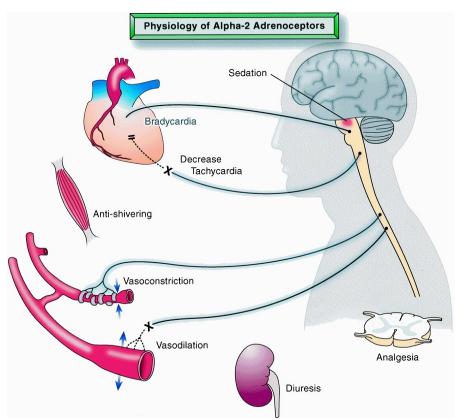
<u>Drug name</u>	<u>Heart rate</u>	<u>Contractility</u>	<u>co</u>	<u>BP</u>	SVR
<u>Phenylephrine</u>	\	No effect	No change or ↓	1	1
<u>Ephedrine</u>	Slightly ↑	†	†	1	Slightly ↑
<u>Norepinephrine</u>	Variable	↑	↑or↓	<u> </u>	markedly†
<u>Epinephrine</u>	†	1	↑†may ↓in high doses	<u> </u>	↑may ↓in very low doses
<u>vasopressin</u>	No change or slightly	No effect	No change or ↓	<u> </u>	†
<u>dobutamine</u>	↑or no change	1	1	Usually †or unchanged	Usually ↓,slightly ↑in Bblocker patient
<u>dopamine</u>	\uparrow	1	↑may ↓in high doses	↑	↓, ↑in high doses
<u>isoproterenol</u>	↑	\uparrow	\uparrow	variable	
<u>Milrinone</u>	Usually no change	\uparrow	1	variable	

Sympathomimetic agents

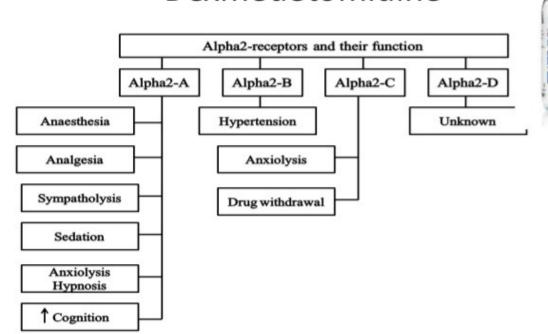
- Received FDA approval for sedation in 1999.
- Selective α2-adrenergic agonist.
- o Resembles clonidine.
- Has sedative and analgesic properties

Sympathomimetic agents

- \circ Selectivity: $\alpha 2:\alpha 1$ 1620:1.
- \circ t_{1/2 elimination} = 2 hours.
- o 94% protein bound.
- \circ Distribution $t_{1/2} = 6$ minutes.
- \circ Context-sensitive $t_{1/2}$: 4 minutes for 10-minute infusion,
- \circ Context-sensitive $t_{1/2}$: 250 minutes for > 8-hour infusion



Sympathomimetic agents



Sympathomimetic agents

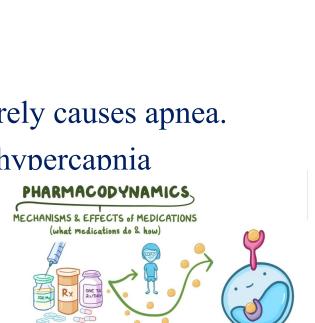
Dexmedetomidine

Sympathomimetic agents

Dexmedetomidine

- Metabolism & elimination → liver and kidney ...
- Nearly 100% biotransformation.
- \circ Metabolites all inactive \rightarrow elimination via urine (95%).
- Significant increase in half-life with liver failure.
- No significant effect of renal insufficiency.

absorption


distribution metabolism

Sympathomimetic agents

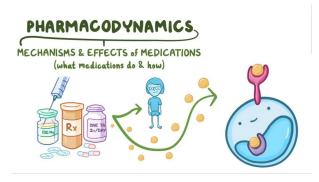
- Induces dose-dependent effects.
- No adverse influence on blood pressure and rarely causes apnea.
- o Disrupts respiratory responses to hypoxia and hypercapnia


Sympathomimetic agents

Dexmedetomidine

- ↓ Cerebral Blood Flow (CBF).
- ↓ Brain metabolism and oxygen consumption.
- o Improved cognitive performance.
- Can reduce postoperative shivering

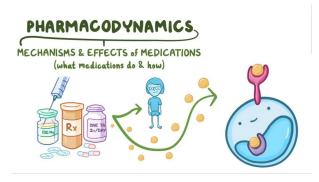
Neuroprotective


Sympathomimetic agents

Dexmedetomidine

- Bifasic effect on Cardiovascular System (CVS).
 - Hypertension.
 - Hypotension.

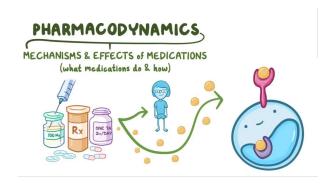
Bradycardia


Sympathomimetic agents

Dexmedetomidine

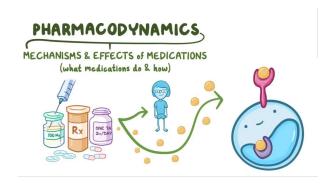
- Bifasic effect on Cardiovascular System (CVS).
 - Hypertension.
 - Hypotension.

Bradycardia



Sympathomimetic agents

- Reduced release of catecholamines.
- o Reduced release of insulin.
- No inhibition of steroidogenesis.



Sympathomimetic agents

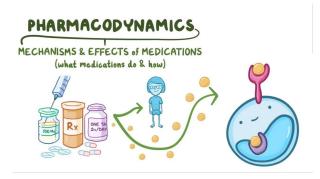
- Reduced release of catecholamines.
- o Reduced release of insulin.
- No inhibition of steroidogenesis.

Sympathomimetic agents

Dexmedetomidine

Renal

- Diuresis.
- ↑ Glomerular Filtration Rate (GFR).
- Inhibition of renin release.



Sympathomimetic agents

- ↓ Salivary flow.
- **↓** Gastrointestinal (GI) motility

Sympathomimetic agents

Dexmedetomidine

Gastrointestinal

- ↓ Salivary flow.
- **↓** Gastrointestinal (GI) motility

Sympathomimetic agents

Dexmedetomidine

Avoid

- Low blood pressure.
- Hypovolemic shock.
- o Conduction disorders.

Sympathomimetic agents

- O Bolus of 0.5-1.0 μg/kg, slowly over several minutes.
- o Effect seen in 5-10 minutes, diminished within 30-60 minutes
- \circ 0.2-0.7 µg/kg/hour infusion.
- Dose adjustment in the elderly, liver failure, or in combination with other sedatives

References

- Hensley F, Martin D. A practical approach to cardiac anesthesia. 2008.
- Paul G. Barash. Clinical Anesthesia, 6th edition.
- G Edward Morgan. Clinical Anesthesiology 2nd edition.