Sputum smear microscopy in the diagnosis of pulmonary tuberculosis: What are the options anno 2014?

Author: dr. Charlotte Trouvé
Supervisor: dr. Eric Nulens
Overview

• **Introduction and History**

• **CAT questions**
  - What are the current available and recommended staining methods for sputum smear microscopic examination in the diagnosis of tuberculosis?
  - What are the results of our own study, where three relevant staining methods are compared to each other?

• **CAT answers**

• **General conclusions**
Tuberculosis in a nutshell

- Described by Hippocrates (5th century BC) ‘phtysis’
- 24 March 1982: Tubercle bacillus (Robert Koch)
- **Infectious disease** caused by *Mycobacterium tuberculosis*
- Air-born transmission
- **Pulmonary VS extra-pulmonary**
- Active VS latent
- **Symptoms**: chronic cough, fever, night sweats, weight loss
- **Treatment**: multiple antibiotics over a long period
Why Does TB Need Global Attention anno 2014?

- Deadliest infectious diseases affecting humans with yearly 2 million people who die from tuberculosis = 7% of all deaths
- Approximately 1/3 of the world population is infected with M. tuberculosis.
- 8-10 million new cases of TB per year.
- Leading cause of death among people with HIV/AIDS.

→ “global public health emergency”
Diagnosis of Pulmonary Tuberculosis

- Medical History
- Physical examination
- **Sputum examination**
  - Microscopic examination
  - Culture = reference
  - NAAT
- X-ray examination
- Tuberculin skin testing, gamma-interferon test
Diagnosis of Pulmonary Tuberculosis

Microscopic Sputum examination

- Minimum requirement of 5,000 to 10,000 CFU/mL
  VS culture (10 to 100 CFU/mL)

- Acid-fast staining procedure
  - Principle:
    - Wax mycol acid containing cell wall of Mycobacteria is impermeable to ordinary stainings
      - Heat softens the mycol wall and allows the stain to enter
      - Phenol is soluble in lipids or waxes
    - Once stained it resists decolorisation by mineral acid (20% H2SO4)
      - Phenol-dye mixture is more soluble in the waxes of the cell wall than alcohol and acid
    - While the Mycobacteria retain the primary stain, the background is decolorized and takes up the counterstain

- Ziehl-Neelsen VS fluorescent methods
# Diagnosis of Pulmonary Tuberculosis

## Microscopic Sputum Examination

- **Interpretation**

<table>
<thead>
<tr>
<th>Ziehl-Neelsen 1000x</th>
<th>Auramine 250x</th>
<th>Auramine 450x</th>
<th>Auramine 630x</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9/100gv</td>
<td>1-9/10gv</td>
<td>2-18/50gv</td>
<td>2-18/100gv</td>
<td>1+</td>
</tr>
<tr>
<td>1-9/10gv</td>
<td>1-9/10gv</td>
<td>4-36/10gv</td>
<td>2-18/10gv</td>
<td>2+</td>
</tr>
<tr>
<td>1-9/gv</td>
<td>10-90/gv</td>
<td>4-36/gv</td>
<td>2-18/gv</td>
<td>3+</td>
</tr>
<tr>
<td>&gt;9/gv</td>
<td>&gt;90/gv</td>
<td>&gt;36/gv</td>
<td>&gt;18/gv</td>
<td>4+</td>
</tr>
</tbody>
</table>
PART 1:
What are the most available staining techniques for the detection of acid-fast bacilli and what are the current recommendations?
Sputum Smear microscopy

Conventional Light Microscopy
  Koch – Ehrlich – Zehl – Neelsen – Kinyoun

Fluorescence Microscopy
  auramine O – auramine rhodamine – acridine orange

LED-Microscopy
Conventional Light Microscopy

- Robert Koch (1882)
  - Staining dried preparations in a weakly alkaline solution of methylene blue
  - After 24h treatment with a solution of vesuvin (Bismarck’s brown)
  - Intense blue tubercles, with a brown background
Conventional Light Microscopy

- Paul Ehrlich (1882)
  - Aniline VS methylene blue
  - Shorter staining time: 15-30 minutes VS 24h
  - Added 30% nitric acid and alcohol for decolorisation of surrounding tissues
  - Counterstaining with yellow or blue dye
  - Red tubercle bacilli more clearly than Koch’s method
  - Introduced ‘heat-fixation’: preparations 1h at 100-110°C or passing them three times through a Bunsen burner
Conventional Light Microscopy

- **Franz Ziehl** (1857-1926)
  
  Hot carbolic fuchsine VS aniline

- **Friedrich Neelsen** (1854-1898)
  
  Sulphuric acid VS nitric acid
Conventional Light Microscopy

- Joseph Kinyoun, 1914
  - Cold carbolic fuchsine VS heated carbolic fuchsine
  - 3% acid-alcohol for decolorizing
  - methylene blue or brilliant green for counterstaining
Conventional Light Microscopy

Ziehl-Neelsen

• Most applicable and available diagnostic tool of choice for diagnosis of TB in developing countries

• Rapid, inexpensive

• Excellent reported specificities: 96% - 100%
  – Highly specific in areas with high incidence

• Variable reported sensitivities: 20% - 86%

  Myneedu V. A pilot study of same day sputum smear examination, its feasibility and usefulness in diagnosis of pulmonary TB. Indian J Tuberc 2011; 58:160-167
Conventional Light Microscopy

Ziehl-Neelsen: sensitivity

• Variable reported sensitivities: 20% - 86%

• Influence of other factors:
  – Prevalence/severity TB
  – Type of specimen
  – Method of processing (concentrated vs direct)
  – Method of centrifugation
  – Quality examination

Iademarco et al: ZN significant more sensitive than fluorochrome staining methods if prepared and interpreted following standard recommendations!
Conventional Light Microscopy

- Ziehl-Neelsen: sensitivity
  - Variable reported sensitivities: 20% - 86%
  - Influence of other factors:
    - Iademarco et al: ZN significant more sensitive than fluorochrome staining methods if prepared and interpreted following standard recommendations!

In reality?
Sömovski et al:
- Large proficiency testing for ZN microscopy
- 167 laboratories in the state NY, 91% used commercial staining kits
- Many unexpected errors:
  - Concentration carbol fuchsin
  - Time of staining and counterstaining
  - Concentration of acid alcohol for decolorization
  - Interpretation
Conventional Light Microscopy

Kinyoun

– Cold VS warm: no heating step required

– Anno 2014: ZN grossly replaced by Kinyoun
  • Less toxic
  • No need for sophisticated suction systems

– Diagnostic performance VS ‘heated’ ZN?
  • Lower reported sensitivities compared to classical ZN!
    – Sömovski, Collins, Allen, Slosarek, Gruft, Mathew
Conventional Light Microscopy

GUIDELINES

- Conventional light microscopy is not recommended in high-income countries for the diagnosis of TB
- If used so: classical Ziehl-Neelsen must be chosen over Kinyoun

NVMM, WHO, IDSA
Fluorescence Microscopy

- 1917, Kaiserling
  Spontaneous fluorescence of M. tuberculosis under kristal-violet

- 1937, Hageman
  Auramine O of auramine-rhodamine as acid-fast fluorescent dye
  Intense light source: halogen or high-pressure mercury vapour lamp

- 1982, Katila
  Acridine orange VS auramine

- 1995, Smithwick
  Introduction of phenol to accelerate dye penetration
Fluorescence Microscopy

- Most applied staining method for TB in high-income countries
- **Belgium**: (questionary in 16 hospital-laboratories in Flanders)

![Staining Method for TB in 16 hospitals in Flanders]

- Auramine
- Acridine orange
- Ziehl-Neelsen (warm)
- Kinyoun (cold)
Fluorescence Microscopy

Practical advantages

- Use of a lower power objective lens (typically 25x) VS conventional light microscopy (typically 100x)
  - Same area of slide more quickly and efficiently
  - 75% less time-consuming than CM
    - 15 minutes for CM VS approx 2.6 minutes for FM

- Easy and simple to recognise the acid-fast bacilli
Fluorescence Microscopy

Diagnostic performance

- **Sensitivity**
  - Most studies result in better sensitivities of FM compared to CM
  - Systematic review/thesis Henri, 2005
    - FM is more sensitive than CM
  - Systematic review Steingart, 2009
    - 52%-97%
    - FM 8-10% more sensitive than CM

- **Specificity**
  - General concern related to less specific performance
    ⇒ Guidelines recommend to confirm acid-fast bacilli by Ziehl-Neelsen (NVMM)
    ⇒ BUT:
    - Systematic review Steingart, 2009:
      - no decrease of specificity of FM compared to CM
    - den Hertog et al, 2013: retrospective study of 10,276 samples
      - no added value of confirming auramine-positive samples with Ziehl-Neelsen
      - Reanalysis of these samples have no impact on patient management and thus waste of resources
Fluorescence Microscopy
Practical disadvantages

- High capital cost for conventional mercury vapour lamp microscopes
  BUT: Kivighja (2003), Sohn (2009): proof of cost-effectivity of FM, even in low-income countries because of the high sensitivity and greater time efficiency

- Significance maintenance of the microscopes
- Limited life-span of the bulbs
- Need for a dark room, away from dusty environments
- Toxic exposure when broken
Fluorescence Microscopy
Global implementation?

**PRO’s:**
Diagnostic performance
Easy to recognise the tubercles
Less time-consuming
Cost-efficient
No need for confirmation with CM

**CON’s:**
High capital cost
Significant maintenance
Limited life-span bulbs
Need for a dark room
Away from dusty environments
Toxic exposure when broken

HIGH-INCOME COUNTRIES

LOW-INCOME COUNTRIES
Next-generation Fluorescence Microscopy
Light-Emitting Diodes LED-microscopes

• Martin, 2005
  – Described LED-microscopes used as excitatory light source for diagnostic fluorescence stains
  – “LED-microscopes could replace a mercury arc lamp for fluorescence microscopy”
Next-generation Fluorescence Microscopy

Light-Emitting Diodes LED-microscopes

Practical advantages

- No need for a dark room
  - Improvement workflow
  - Maximum space utilisation in the lab
- Less maintenance required than FM
- Good durability and portability
- Less capital costs than FM

Overall better cost-efficiency compared to CM:
  - Withlaw, 2011: US$2,10 \text{CM} \text{ VS } US$1,63 \text{LED}
  - Xia, 2014: US$2,20 (\pm 0,58) \text{CM} \text{ VS } US$1,97 (\pm 0,71) \text{LED} p < 0,05
Next-generation Fluorescence Microscopy
Light-Emitting Diodes LED-microscopes
Diagnostic Performance

- Meta-analysis WHO expert group, 2009:
  - Sensitivity of LED is significantly better compared to Ziehl-Neelsen: 6% (95% CI, 0.1-13%) with similar specificities
  - Sensitivity and specificity of LED is significantly better compared to FM: 5% (95% CI, 0.0-11%) resp. 1% (95% CI, -0.7-3%)
  - Most more recent studies confirm these findings

<table>
<thead>
<tr>
<th></th>
<th>LED-FM</th>
<th>FM</th>
<th>CM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuevas (2011)</td>
<td>72.8%</td>
<td></td>
<td>65.8%</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Bonnet (2011)</td>
<td>73.2%</td>
<td></td>
<td>72.0%</td>
<td>=0.32</td>
</tr>
<tr>
<td>Khatun (2011)</td>
<td>95.4%</td>
<td>68.1%</td>
<td>56.1%</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Bhala (2013)</td>
<td>83.1%</td>
<td>82.2%</td>
<td>78.0%</td>
<td></td>
</tr>
<tr>
<td>Marzouk (2013)</td>
<td>82.2%</td>
<td>82.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albert (2010)</td>
<td>+5.6-9.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next-generation Fluorescence Microscopy

**Global implementation?**

**PRO’s:**
- Diagnostic performance
- Easy to recognise the tubercles
- Less time-consuming
- Cost-efficient
- No need for confirmation with CM

**CON’s:**
- High capital cost
- Significant maintenance
- Limited life-span bulbs
- Need for a dark room
- Away from dusty environments
- Toxic exposure when broken

HIGH-INCOME COUNTRIES

LOW-INCOME COUNTRIES
Next-generation Fluorescence Microscopy

Global implementation?

**PRO’s:**
- Diagnostic performance
- Easy to recognise the tubercles
- Less time-consuming
- Cost-efficient
- No need for confirmation with CM

**CON’s:**
- High capital cost
- Significant maintenance
- Limited life-span bulbs
- Need for a dark room
- Away from dusty environments
- Toxic exposure when broken

HIGH-INCOME COUNTRIES

LOW-INCOME COUNTRIES
Next-generation Fluorescence Microscopy 
Guidelines

- FM be replaced by LED-microscopy in all settings where FM is currently used

- LED microscopy be phased in as an alternative to CM in both high- and low-income laboratories

WHO2011
PART 2: Field study: A small prospective study in order to compare diagnostic performance of three relevant staining techniques for the detection of acid-fast bacilli: Ziehl-Neelsen, auramine O and acridine orange.
Many studies evaluated performance of CM and FM, compared to each other.

FM: most of them related to auramine.

AZ Sint-Jan Brugge: Acridine Orange staining:

- scarce literature concerning diagnostic performance
  - Kalich (1989): Acridine orange outperforms Auramine O
  - Narayan (2012): superior sensitivity of Acridine Orange compared to Auramine O
Material and Methods

• Prospective study AZ Sint-Jan, Bruges, AZ Zeno, Knokke-Heist/Blankenberge and UMC Saint Pierre/Bordet Instituut Brussels
• 200 routine respiratory samples, patients with clinical suspected TB
• After decontamination, three smear slides were prepared.
• Smears were stained by standard recommendations with Ziehl-Neelsen, auramine O and acridine orange
• Stained slides were examined following standard recommendation by experienced laboratory staff/clinical biologists.
## Results

- 10.3% positive cultures = reference method

<table>
<thead>
<tr>
<th></th>
<th>Ziehl-Neelsen</th>
<th>Auramine O</th>
<th>Acridine Orange</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sensitivity</strong></td>
<td>66.67% (95CI 43.04-85.35)</td>
<td>66.67% (95CI 43.04-85.35)</td>
<td>61.90% (95CI 38.45-81.84)</td>
</tr>
<tr>
<td><strong>Specificity</strong></td>
<td>97.55% (95CI 93.83-99.31)</td>
<td>100% (95CI 97.73-100)</td>
<td>99.38% (95CI 96.6-99.9)</td>
</tr>
<tr>
<td><strong>PPV</strong></td>
<td>77.78% (95CI 52.36-93.45)</td>
<td>100% (95CI 76.66-100)</td>
<td>92.86% (95CI 66.06-98.81)</td>
</tr>
<tr>
<td><strong>NPV</strong></td>
<td>95.78% (95CI 91.5-98.28)</td>
<td>95.86 (95CI 91.65-98.31)</td>
<td>95.27% (95CI 90.88-97.93)</td>
</tr>
</tbody>
</table>
General Answers and Conclusions

- Sputum smear microscopy remains the most important diagnostic tool for detecting acid-fast bacilli

- Guidelines and other published data:
  - LED fluorescence microscopy gains importance
    - Ease in use/interpretation
    - Cost-effectivity
    - Diagnostic performance
    - Reference staining method in high-income countries
    - Not globally implemented yet

  - Conventional light microscopy: Ziehl-Neelsen/Kinyoun loses importance
    - More difficult to interpret
    - More expensive
    - Less performant
    - However: not confirmed by our field study => if prepared and interpreted following standard recommendations equal sensitivities? (Iademarco and own results)
    - Still the most known, available and applied staining method in developing countries
    - More and more abandoned in high income countries
Did’s and To Do’s

• Field study: overall good performance of the three staining methods. Too small for adequate conclusions concerning comparison between the methods.

• Only a limited of studies have been performed evaluating the diagnostic performance of Acridine Orange staining for the detection of acid-fast bacilli.

→ Because of good performance of the field study and it’s successful validation, the Acridine Orange staining is implemented in our lab for the detection of acid-fast bacilli.

→ Follow-up literature concerning diagnostic performance of Acridine Orange in the detection of acid-fast bacilli.
• Daniel TM. The history of tuberculosis. Resp medicine 2006; 100:1862-1870
• Ehrlich P. A method for staining the tubercle bacillus. 1882
• Steingart K. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis 2006; 6: 570-581
• Iademarco M. Evaluation of laboratory methods used to examine sputum specimens for Mycobacterium tuberculosis. Abstracts of the 30th World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease; Madrid, Spain. 1999. Abstract No. 216-PD
• Laifangbam S. A comparative study of fluorescent microscopy with Ziehl-Neelsen staining and culture for the diagnosis of pulmonary tuberculosis. Kathmandu University medical journal (KUMJ) 7:27 pg 226-30
• den Hertog A. No added value of performing Ziehl-Neelsen on auramine-positive samples for tuberculosis diagnostics. Int Tuberc Lung Dis 20103; 17:1094-1099
• Marzouk M. Comparison of LED and conventional fluorescence microscopy for detection of acid-fast bacilli in an area with high tuberculosis incidence. Diag Microbiol and Inf Dis 2013; 76: 306-308
• Khatun Z. Usefulness of Light Emitting Diode (LED) fluorescent microscopy as a tool for rapid and effective method for the diagnosis of pulmonary tuberculosis. Bangladesh Med Res Counc Bull 2011; 37:7-10