Anesthesia for the cardiac compromised patient
Right ventricular failure

26th International Winter Symposium

Update in Cardiothoracic Anesthesia
January 7th - 8th, 2011
Leuven, Belgium

Steffen Rex
Dept. of Anesthesiology
University Hospital, RWTH Aachen
Germany
srex@ukaachen.de
Significance of the right ventricle

Starr I, Jeffers WA, Meade RH

The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease.

Am Heart J 1943; 26:291–301
Significance of the right ventricle
Significance of the right ventricle

RV-function independent predictor of morbidity and mortality in patients with:

- **COPD**

- **PPH**

- **Left-sided valvular heart disease**

- **Inferior myocardial infarction**

- **Chronic Heart Failure**
 - de Groote P: Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. *J Am Coll Cardiol* 1998; 32: 948-54

- **Congenital Heart Disease**

- **Pulmonary Artery Embolism**

- **ARDS**

- **Cardiothoracic Surgery**

- **Liver Transplantation**
Epidemiology of RV failure in the perioperative period

Cardiac Surgery

- Few prospective data
- 48% of LCOS, mortality 44% Davila-Roman, Ann Thor Surg 1995
- Heart transplant: 50% of early complications; 42% of perioperative mortality Haddad, CanJCardiol 2008
- LVAD-implantation: 30-50%; mortality: 46% Matthews, JACC 2008

ARDS

- Few prospective data
- 25-30% using modern ventilation strategies (mortality: 30-40%) Vieillard-Baron, CCM 2001; Jardin, ICM 2007; Osman, ICM 2009
Right ventricular paradoxon

Passive Conduit

Low

RV Afterload

Increased

Active part of circulatory homeostasis
Anatomy of the right ventricle
The right ventricle is not just a small left ventricle!

- Shape: triangular/crescent (LV: ellipsoid)
- Thin-walled (2-5mm vs. LV: 7-11mm):
 → poor contractile reserves
Pathophysiology of the right ventricle
Consequences of an increase in afterload

- Specific anatomy
- Poor contractile reserves

Increased susceptibility to elevations of afterload

1) RV Output ↓

Haddad F et al.
The Right Ventricle in Cardiac Surgery, a Perioperative Perspective: I. Anatomy, Physiology, and Assessment

Right ventricle
Left ventricle

Stroke volume (% of control value)
Arterial pressure (mmHg)
Pathophysiology of the right ventricle
Consequences of an increase in afterload

2) LV Output ↓

Ventricular Interdependence

Diastolic ventricular interaction:
Leftward septal shift → LV preload ↓

Systolic ventricular interaction:
Leftward septal shift → LV contractility ↓
3) Septal dysfunction → RV Output ↓

Ventricular Interdependence

Systolic ventricular interaction:
- Leftward septal shift → LV contractility ↓ → RV output ↓
4) RV Coronary Perfusion ↓

Van Wolferen et al.
Right coronary artery flow impairment in patients with pulmonary hypertension.
5) Activation of apoptotic pathways

- ↓ RV and septal expressions of Bcl-2 *(antiapoptotic)*
- No changes in expressions of Bax *(proapoptotic)*
 \[\rightarrow \] ↑ Bax/Bcl-2 ratio *(proapoptotic)*
- ↑ RV caspase-8, caspase-9 and caspase-3 *(proapoptotic)*

Dewachter C et al. Activation of apoptotic pathways in experimental acute afterload-induced right ventricular failure
Crit Care Med 2010; 38:1405–1413
Pathophysiology of the right ventricle
The vicious cycle of RV failure

A.

↑ RV Preload

↑ RV Afterload

Acute RV Failure and Dilation

↓ RV Output

Leftward septal shift

↓ LV contractility

↓ LV compliance

↓ LV preload

↓ Cardiac output

Tricuspid Regurgitation

↓ RV Output

↓ RV contractility

↑ RV wall tension

Right-Left-Shunting

↓ RV O₂ Supply/Demand

↓ RV coronary perfusion

Systemic hypotension

B.

↓ RV Output

↓ Cardiac output

↓ RV contractility

↑ RV Afterload

↑ RV Preload

↓ LV contractility

↓ LV compliance

↓ LV preload

↓ Cardiac output

↓ RV O₂ Supply/Demand

↓ RV coronary perfusion

Systemic hypotension
Pathophysiology of the right ventricle
The vicious cycle of RV failure

- ↑ RV afterload
 - RV dilatation
 - RV dysfunction
 - Tricuspid Regurgitation

- ↓ RV contractility
 - RV ischemia

- ↑ RV wall tension
 - ↑ RV diastolic dysfunction

Venous Congestion

Liver Failure
Renal Failure

Gaynor et al.
Right Atrial and Ventricular Adaptation to Chronic Right Ventricular Pressure Overload.
Circulation. 2005;112[suppl I]:I-212–I-218
Etiology of RV failure in the perioperative period

- Ischemia
- Postoperative contractile dysfunction (Stunning, Air embolism)
- Sepsis
- Cardiac Surgery
- "Adult congenital heart disease"
- Tricuspid regurgitation
- Pulmonary regurgitation

RV Contractility

RV Afterload
- PHT
- CPB
- Pulmonary Embolism
- Mechanical Ventilation
- ALI/ARDS
- Pulmonary Valve Stenosis

Intracardiac shunt

RV Preload
- Intracardiac shunt
- Pulmonary regurgitation
Etiology of RV failure
Post-Cardiotomy

- Air Embolism (RCA!)
- Suboptimal myocardial protection (Stunning)
- RV Ischaemia
- Protamine
- CPB-associated PHT
 - Release of pulmonary vasoconstrictors
 - Depression of pulmonary vasodilators

![Diagram of heart with arrows indicating blood flow and air emboli]

Courtesy P. Wouters
Monitoring the right ventricle in the perioperative period

Pulmonary Artery Catheter

- CVP
- RVP
- PAP

Right ventricular failure
Monitoring the right ventricle in the perioperative period

Echocardiography

- RV Shape
- Relative Size
- IVS
- IAS
- RVSP

- RVEDA < 0.7 LVEDA
- RVFAC > 40%
Monitoring the right ventricle in the perioperative period

Echocardiography: Longitudinal Function!

TAPSE =

Tricuspid Anular Plane Systolic Excursion

Vogel et al.
Validation of Myocardial Acceleration During Isovolumic Contraction as a Novel Noninvasive Index of Right Ventricular Contractility.
Circulation. 2002;105:1693-1699

Misannt, Rex et al.
Load-sensitivity of Regional Tissue Deformation in the Right Ventricle: Isovolumic versus Ejection-phase Indices of Contractility.
Eur Heart J 2008
Therapy/Prevention of RV failure in the perioperative period

Maintain RV intrinsic protective mechanism:

Homeometric Autoregulation:
Adaptation of RV contractility to match an increase in afterload

Avoid/Stop Sympathicolysis

Rex et al.
Thoracic epidural anesthesia impairs the hemodynamic response to acute pulmonary hypertension by deteriorating right ventricular–pulmonary arterial coupling.
Crit Care Med 2007; 35:222–229
Therapy/Prevention of RV failure in the perioperative period

Maintain Homeometric Autoregulation:

Avoid/stop cardiac sympathicolysis

Missant C., Rex S. et al.

Differential effects of lumbar and thoracic epidural anaesthesia on the haemodynamic response to acute right ventricular pressure overload.

British Journal of Anaesthesia 104 (2): 143–9 (2010)
Therapy/Prevention of RV failure in the perioperative period

Avoid Hypoxia

Hypoxic Pulmonary Vasoconstriction
Therapy/Prevention of RV failure in the perioperative period

Adjust the ventilator

- **PEEP**
 - HPV
 - Alveolar vessels
 - Compression by overinflation
 - Avoid high airway pressures/high tidal volumes
 - Extra-alveolar vessels
 - Avoid hypoxia

- **Total PVR**

Axes:
- Pulmonary Vascular Resistance (Y-axis)
- Lung Volume (X-axis)
 - RV (Right Ventricular End-diastolic Pressure)
 - FRC (Functional Residual Capacity)
 - TLC (Total Lung Capacity)
Pharmacological Therapy of RV failure in the perioperative period

1. **Vasodilation**
 - ↑ RV Afterload
 - RV Dilatation
 - RV Dysfunction
 - ↓ RV Output
 - Leftward septal shift

2. **Inodilators**
 - ↓ RV contractility
 - RV Ischemia
 - RV diastolic dysfunction

3. **Inotropy**
 - ↑ RV wall tension
 - ↑ RV VO$_2$
 - ↓ RV DO$_2$
 - ↓ Coronary perfusion pressure

4. **Venous Congestion**
 - Shunt (R-L)

5. **Vasopressors**
 - ↓ LV Preload
 - ↓ CO
 - Optimization Preload
 - Hypotension

- Vasopressors
- Optimization Preload

Right ventricular failure
Therapy of RV failure in the perioperative period

- No RCT‘s!
- Therapeutic concepts derived from LV failure
- Volume: Caution!
 - Tricuspid regurgitation
 - Wall tension
- Inotropy
 - Poor contractile reserves of RV
 - Inodilator (levosimendan, milrinone) vs. Inopressor (epinephrine)
- Vasoconstriction
 - Coronary artery perfusion pressure
 - Optimization of ventricular interdependence
 - Caution: PVR
- Vasodilation
 - Caution: Systemic hypotension / oxygenation
 - Selective pulmonary vasodilation (iNO, iloprost)
Inhaled NO

Potential Benefits of Inhaled NO

- Mild Bronchodilation
- Improved V/Q
- Pulmonary Shunt
- Selective pulmonary vasodilation

Problems:

- Non-Responders
- Toxic metabolites (NO$_2^-$, NO$_x$)
- Sophisticated monitoring (NO, NO$_2^-$)
- Met-Hemoglobinemia

- Inhibition of platelet-aggregation
- Rebound-effects (PHT, Hypoxia)
- Extremely short duration of action
- Not approved
- Costs
- No proven impact on outcome (ARDS)

Dosing:

- 20 (bis zu 40) ppm, weaning!
Right ventricular failure
Selective pulmonary vasodilation

Inhaled nitric oxide therapy in adults: European expert recommendations

- Clinical experience suggests that in ... acute RV dysfunction and elevated PVR, use of iNO may result in haemodynamic improvement when used during or after cardiac surgery
- Prior to iNO administration RV function should be optimised with conventional treatment

Peter Germann
Antonio Braschi
Giorgio Della Rocca
Anh Tuan Dinh-Xuan
Konrad Falke
Claes Frostell
Lars E. Gustafsson
Philippe Hervé
Philippe Jolliet
Udo Kaisers
Hector Litvan
Duncan J. Macrae
Marco Maggiorini
Nandor Marczin
Bernd Mueller
Didier Payen
Marco Ranucci
Dietmar Schranz
Rainer Zimmermann
Roman Ullrich
Therapy of RV failure

Selective pulmonary vasodilation: Iloprost

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable carbacyclin derivative of PG1 (_2)</td>
<td>Special nebulizer required</td>
</tr>
<tr>
<td>Half-life: 6-9 mins</td>
<td>Ill-defined dose-response-relationship</td>
</tr>
<tr>
<td>Duration of action: 20-60 mins</td>
<td></td>
</tr>
<tr>
<td>→ Intermittent nebulization</td>
<td></td>
</tr>
<tr>
<td>Solution stable at room temperature</td>
<td>Non-responders</td>
</tr>
<tr>
<td>Solution stable at physiologic pH</td>
<td>Costs</td>
</tr>
<tr>
<td>Light-stable</td>
<td>No impact on outcome</td>
</tr>
</tbody>
</table>

Dosing:

- 20 (up to 40) \(\mu\)g, every 1-4-6 h
Therapy of RV failure
Selective pulmonary vasodilation: Iloprost

Inhaled iloprost to control pulmonary artery hypertension in patients undergoing mitral valve surgery: a prospective, randomized-controlled trial.
Therapy of RV failure
Selective pulmonary vasodilation

Sildenafil

Advantages:
• "selective" inhibition of PDE-V → cGMP
• Low costs
• Inotropic effects in RV hypertrophy

Disadvantages:
• Few experience
• Systemic vasodilation

Indications:
• Mitigation of rebound-PHT during weaning from iNO
• Chronic therapy of PHT
• Combination therapy with inhaled iloprost

Dosing:
Start: 3x12.5mg p.o., then increase to up to 3x50mg, Caution: SVR!!!
Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction.

Crit Care Med 2007; 35:707–715
RV failure

Summary

- Neglected problem in anaesthesia and intensive care medicine
- Poor prognosis
- Unique (patho)physiological characteristics
 - Necessitate tailored prophylaxis and therapy
- Therapy: Selective pulmonary vasodilation, vasopressors, inodilators
- Need for RCT‘s
Thank you very much for your attention